Solar Energy News  
SPACE MEDICINE
Legions of nanorobots target cancerous tumors with precision
by Staff Writers
Montreal, Canada (SPX) Aug 17, 2016


The legions of nanorobotic agents are actually composed of more than 100 million flagellated bacteria -- and therefore self-propelled -- and loaded with drugs that moved by taking the most direct path between the drug's injection point and the area of the body to cure. Image courtesy Montreal Nanorobotics Laboratory. For a larger version of this image please go here.

Researchers from Polytechnique Montreal, Universite de Montreal and McGill University have just achieved a spectacular breakthrough in cancer research. They have developed new nanorobotic agents capable of navigating through the bloodstream to administer a drug with precision by specifically targeting the active cancerous cells of tumours.

This way of injecting medication ensures the optimal targeting of a tumour and avoids jeopardizing the integrity of organs and surrounding healthy tissues. As a result, the drug dosage that is highly toxic for the human organism could be significantly reduced.

This scientific breakthrough has just been published in the prestigious journal Nature Nanotechnology in an article titled "Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions." The article notes the results of the research done on mice, which were successfully administered nanorobotic agents into colorectal tumours.

"These legions of nanorobotic agents were actually composed of more than 100 million flagellated bacteria - and therefore self-propelled - and loaded with drugs that moved by taking the most direct path between the drug's injection point and the area of the body to cure," explains Professor Sylvain Martel, holder of the Canada Research Chair in Medical Nanorobotics and Director of the Polytechnique Montreal Nanorobotics Laboratory, who heads the research team's work.

"The drug's propelling force was enough to travel efficiently and enter deep inside the tumours."

When they enter a tumour, the nanorobotic agents can detect in a wholly autonomous fashion the oxygen-depleted tumour areas, known as hypoxic zones, and deliver the drug to them. This hypoxic zone is created by the substantial consumption of oxygen by rapidly proliferative tumour cells. Hypoxic zones are known to be resistant to most therapies, including radiotherapy.

But gaining access to tumours by taking paths as minute as a red blood cell and crossing complex physiological micro-environments does not come without challenges. So Professor Martel and his team used nanotechnology to do it.

Bacteria with compass
To move around, bacteria used by Professor Martel's team rely on two natural systems. A kind of compass created by the synthesis of a chain of magnetic nanoparticles allows them to move in the direction of a magnetic field, while a sensor measuring oxygen concentration enables them to reach and remain in the tumour's active regions.

By harnessing these two transportation systems and by exposing the bacteria to a computer-controlled magnetic field, researchers showed that these bacteria could perfectly replicate artificial nanorobots of the future designed for this kind of task.

"This innovative use of nanotransporters will have an impact not only on creating more advanced engineering concepts and original intervention methods, but it also throws the door wide open to the synthesis of new vehicles for therapeutic, imaging and diagnostic agents," Professor Martel adds.

"Chemotherapy, which is so toxic for the entire human body, could make use of these natural nanorobots to move drugs directly to the targeted area, eliminating the harmful side effects while also boosting its therapeutic effectiveness."

Paper - DOI: 10.1038/NNANO.2016.137


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Polytechnique Montreal
Space Medicine Technology and Systems






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
Brain-machine interfaces trigger partial neurological recovery in chronic paraplegics
Sao Paulo, Brazil (SPX) Aug 15, 2016
On June 12th 2014, the Walk Again Project (WAP), a non-profit international research consortium, performed a unique scientific demonstration, during the opening ceremony of the Soccer World Cup in Brazil. During that demo, a young Brazilian man paralyzed from his chest down, delivered the opening kickoff of the World Cup by using a brain-machine interface that allowed him to control the movement ... read more


SPACE MEDICINE
Biofuel production technique could reduce cost, antibiotics use

National Trust historic home enjoys 21st Century heat

Patented bioelectrodes have electrifying taste for waste

The Thai village using poop to power homes

SPACE MEDICINE
China's Midea grabs near-95% stake in German firm Kuka

CSRA explores human-machine interaction for Air Force

New robot overcomes obstacles

First wave-propelled robot swims, crawls and climbs using a single, small motor

SPACE MEDICINE
Wind power fiercer than expected

OX2 wins EPC contract for 112 MW wind power in Norway

E.ON starts new wind farm in Texas

Offshore wind the next big thing, industry group says

SPACE MEDICINE
New Zealand offers electric vehicle stimulus

US finds evidence of criminality in VW probe: report

China auto sales surge 23% in July: industry group

NREL assesses strategies needed for light-duty vehicle greenhouse gas reduction

SPACE MEDICINE
Making nail polish while powering fuel cells

Stanford-led team reveals nanoscale secrets of rechargeable batteries

Simulating complex catalysts key to making cheap, powerful fuel cells

Lithium-ion batteries: Capacity might be increased by 6 times

SPACE MEDICINE
Nuclear Inspection Benefits from New Generation Sensor Lens

South Korea Relaunches Wolsong NPP's Reactor After Fixing Technical Problem

Japan reactor restarts in post-Fukushima nuclear push

Bulgaria seeks private money for nuclear plant

SPACE MEDICINE
Low sales prices hit Czech power giant CEZ in H1

New MIT system can identify how much power is being used by each device in a household

ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

SPACE MEDICINE
A plant present in Brazil is capable of colonizing deforested areas

Many more species at risk from Southeast Asia tree plantations, study finds

Drought conditions slow the growth of Douglas fir trees across the West

Early snowmelt reduces forests' atmospheric CO2 uptake









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.