Solar Energy News  
CHIP TECH
Let's not make big waves
by Staff Writers
Dresden, Germany (SPX) Mar 28, 2019

An ultrashort spin wave (red) running through a nickel iron layer. Towards the center of the layer, the magnetic direction (blue arrows) swings only up and down in a sort of knot, while the motion in the other parts remains circular -- with opposing sense of magnetic rotation.

Due to its potential to make computers faster and smartphones more efficient, spintronics is considered a promising concept for the future of electronics. In a collaboration including the Max Planck Institute for Intelligent Systems (MPI-IS) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a team of researchers has now successfully generated so-called spin waves much more easily and efficiently than was previously deemed possible.

Modern computer chips are based on transporting electric charges: Each processing event causes an electron current to flow in an electronic component. These electrons encounter resistance, which generates undesired heat. The smaller the structures on a chip, the more difficult it is to dissipate the heat. This charge-based architecture is also partially the reason why the processors' clock rates have not seen any significant increases in years.

The nice, steady development curve of chip performance and speed is now flattening. "Existing concepts are reaching their limits," explains Dr. Sebastian Wintz from the Institute of Ion Beam Physics and Materials Research at HZDR. "This is why we are working on a new strategy, the spin waves."

This approach no longer involves transporting charges, but only transfers the electrons' intrinsic angular momentum (,spin') in a magnetic material. The electrons themselves remain stationary, while only their spins change. Since the spins of neighboring electrons sense each other, a change in one spin can travel to its neighbors. The result is a magnetic signal running through the material like a wave - a spin wave.

The advantage of spin-powered components is that they would generate very little heat, which means they might use significantly less energy - and this is of great interest for mobile devices such as smartphones. It may also be possible to further miniaturize components for certain applications because spin waves have far shorter wavelengths than comparable electromagnetic signals, for instance in mobile communication. This means we could fit more circuits onto a chip than we can today.

Stirring a spin wave with a magnet vortex
Before we can do all this, we first need a lot more fundamental research. For instance, we need to know how to efficiently generate spin waves. Experts have been trying to work this out for a while now, attaching micrometer-sized metal strips onto thin magnetic layers. An alternating current running through this strip creates a magnetic field that is limited to a very small space.

This field will then excite a spin wave in the magnetic layer. But this method has one disadvantage: It is difficult to make the wavelength of the generated spin waves smaller than the width of the metal strip - which is unfavorable for the development of highly integrated components with nanometer-sized structures.

Yet there is an alternative: A magnetic material shaped into circular disks evokes the formation of magnetic vortices whose cores measure no more than about ten nanometers. A magnetic field can then make this vortex core oscillate, which triggers a spin wave in the layer. "Some time ago, we needed relatively complex multi-layered materials to make this happen," Wintz reports. "Now we have managed to send out spin waves from vortex cores in a very simple material." They use an easy-to-manufacture nickel iron alloy layer of about 100 nanometers in thickness.

Unexpectedly short wavelengths
What's remarkable is the wavelength of the generated spin waves - a mere 80 nanometers. "The expert community was surprised we did this in such a simple material," says Dr. Georg Dieterle, who explored the phenomenon in his PhD thesis at MPI-IS. "We also didn't expect to be able to generate such short waves at frequencies in the lower gigahertz range."

Experts think that the reason for the short wavelengths resides in the way they travel. Close to the cross-sectional center of the nickel iron layer, the spin wave forms a sort of "knot", inside of which the magnetic direction oscillates only up and down rather than along its usually circular trajectory.

To make these phenomena visible, the team used a special x-ray microscope at the electron storage ring BESSY II at the Helmholtz Zentrum Berlin. "This is the only place on earth that offers the necessary space and time resolutions in this combination," emphasizes Prof. Gisela Schutz, director at MPI-IS.

"Without this microscope, we would not have been able to observe these effects." Now the experts are hoping that their results will help further the development of spintronics. "Our vortex cores could, for instance, serve as a local, well controllable source to explore the underlying phenomena and develop new concepts with spin-wave-based components," Dieterle projects. "The spin waves we observed could be of future relevance to highly integrated circuits."

The researchers are presenting their results in the journal Physical Review Letters (DOI: 10.1103/PhysRevLett.122.117202).

Research Report: "Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths"


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Air Force Research Lab poised to change the face of high-power electronics
Wright-Patterson AFB OH (SPX) Mar 27, 2019
An emerging AFRL laboratory capability is charting a new course for electronics innovation. The Oxide Molecular Beam Epitaxy laboratory is poised to become a major developer of high-quality semiconductor materials that are the basis for a new breed of lighter, smaller, more agile electronics. At the center of the laboratory is the MBE chamber, a first-of-its-kind capability within the U.S. This highly-specialized piece of equipment enables the growth of semiconducting materials that can be u ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Rice reactor turns greenhouse gas into pure liquid fuel

Methane-producing microorganism makes a meal of iron

Extracting clean fuel from sunlight

Researchers use AI to plot green route to nylon

CHIP TECH
'Sense of urgency', as top tech players seek AI ethical rules

CIMON back on Earth after 14 months on the ISS

Psychosensory electronic skin technology for future AI and humanoid development

NASA Robots Compete Underground in DARPA Challenge

CHIP TECH
Angry residents send German wind industry spinning

Colombia's biggest wind power portfolio purchased by AES Colombia

Growth of wind energy points to future challenges, promise

Scout obtains construction permit for 200MW Sweetland Wind Farm

CHIP TECH
DLR at IAA New Mobility World 2019

Brussels mulls car use tax to cut traffic jams

Singapore to trial driverless buses booked with an app

Seoul to fine Volkswagen over 'illicit' emissions devices

CHIP TECH
Breakthrough enables storage and release of mechanical waves without energy loss

First report of superconductivity in a nickel oxide material

Coating developed by Stanford researchers brings lithium metal battery closer to reality

Physicists' study demonstrates silicon's energy-harvesting power

CHIP TECH
Russia launches floating nuclear reactor in Arctic despite warnings

US Govt issues new safety rules for launching nuclear systems into space

Russia launches floating nuclear reactor in Arctic despite warnings

Slovenia PM backs building second nuclear reactor

CHIP TECH
Macro-energy systems and the science of the energy transition

Oslo wants to reduce its emissions by 95 percent by 2030

Northern Irish pensioner thrives in off grid cottage

Global warming = more energy use = more warming

CHIP TECH
Bolsonaro accuses UN rights chief of meddling, praises Pinochet

Amazon's 'tallest tree' safe from fires, say scientists

Brazil president will make video call to Amazon summit

Fires not the only threat facing Amazon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.