Subscribe free to our newsletters via your
. Solar Energy News .




WATER WORLD
Life on an aquaplanet
by Jennifer Chu for MIT News
Boston MA (SPX) Dec 29, 2014


illustration only

Nearly 2,000 planets beyond our solar system have been identified to date. Whether any of these exoplanets are hospitable to life depends on a number of criteria. Among these, scientists have thought, is a planet's obliquity - the angle of its axis relative to its orbit around a star.

Earth, for instance, has a relatively low obliquity, rotating around an axis that is nearly perpendicular to the plane of its orbit around the sun. Scientists suspect, however, that exoplanets may exhibit a host of obliquities, resembling anything from a vertical spinning top to a horizontal rotisserie. The more extreme the tilt, the less habitable a planet may be - or so the thinking has gone.

Now scientists at MIT have found that even a high-obliquity planet, with a nearly horizontal axis, could potentially support life, so long as the planet were completely covered by an ocean. In fact, even a shallow ocean, about 50 meters deep, would be enough to keep such a planet at relatively comfortable temperatures, averaging around 60 degrees Fahrenheit year-round.

David Ferreira, a former research scientist in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS), says that on the face of it, a planet with high obliquity would appear rather extreme: Tilted on its side, its north pole would experience daylight continuously for six months, and then darkness for six months, as the planet revolves around its star.

"The expectation was that such a planet would not be habitable: It would basically boil, and freeze, which would be really tough for life," says Ferreira, who is now a lecturer at the University of Reading, in the United Kingdom. "We found that the ocean stores heat during summer and gives it back in winter, so the climate is still pretty mild, even in the heart of the cold polar night. So in the search for habitable exoplanets, we're saying, don't discount high-obliquity ones as unsuitable for life."

Details of the group's analysis are published in the journal Icarus. The paper's co-authors are Ferreira; Sara Seager, the Class of 1941 Professor in EAPS and MIT's Department of Physics; John Marshall, the Cecil and Ida Green Professor in Earth and Planetary Sciences; and Paul O'Gorman, an associate professor in EAPS.

Tilting toward a habitable exoplanet
Ferreira and his colleagues used a model developed at MIT to simulate a high-obliquity "aquaplanet" - an Earth-sized planet, at a similar distance from its sun, covered entirely in water.

The three-dimensional model is designed to simulate circulations among the atmosphere, ocean, and sea ice, taking into the account the effects of winds and heat in driving a 3000-meter deep ocean. For comparison, the researchers also coupled the atmospheric model with simplified, motionless "swamp" oceans of various depths: 200 meters, 50 meters, and 10 meters.

The researchers used the detailed model to simulate a planet at three obliquities: 23 degrees (representing an Earth-like tilt), 54 degrees, and 90 degrees.

For a planet with an extreme, 90-degree tilt, they found that a global ocean - even one as shallow as 50 meters - would absorb enough solar energy throughout the polar summer and release it back into the atmosphere in winter to maintain a rather mild climate. As a result, the planet as a whole would experience spring-like temperatures year round.

"We were expecting that if you put an ocean on the planet, it might be a bit more habitable, but not to this point," Ferreira says. "It's really surprising that the temperatures at the poles are still habitable."

A runaway "snowball Earth"
In general, the team observed that life could thrive on a highly tilted aquaplanet, but only to a point. In simulations with a shallower ocean, Ferreira found that waters 10 meters deep would not be sufficient to regulate a high-obliquity planet's climate. Instead, the planet would experience a runaway effect: As soon as a bit of ice forms, it would quickly spread across the dark side of the planet.

Even when this side turns toward the sun, according to Ferreira, it would be too late: Massive ice sheets would reflect the sun's rays, allowing the ice to spread further into the newly darkened side, and eventually encase the planet.

"Some people have thought that a planet with a very large obliquity could have ice just around the equator, and the poles would be warm," Ferreira says. "But we find that there is no intermediate state. If there's too little ocean, the planet may collapse into a snowball. Then it wouldn't be habitable, obviously."

Darren Williams, a professor of physics and astronomy at Pennsylvania State University, says past climate modeling has shown that a wide range of climate scenarios are possible on extremely tilted planets, depending on the sizes of their oceans and landmasses. Ferreira's results, he says, reach similar conclusions, but with more detail.

"There are one or two terrestrial-sized exoplanets out of a thousand that appear to have densities comparable to water, so the probability of an all-water planet is at least 0.1 percent," Williams says. "The upshot of all this is that exoplanets at high obliquity are not necessarily devoid of life, and are therefore just as interesting and important to the astrobiology community."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
MIT
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Australia's coastal network keeps watch on extreme ocean events
Canberra, Australia (SPX) Dec 26, 2014
A network of nine reference sites off the Australian coast is providing the latest physical, chemical, and biological information to help scientists better understand Australia's coastal seas, according to a study published in the open-access journal PLOS ONE by Tim Lynch from CSIRO, Australia and colleagues. Sustained oceanic observations allow scientists to track changes in oceanography ... read more


WATER WORLD
Guelph Researchers Recipe: Cook Farm Waste into Energy

Conversion process turns biomass 'waste' into lucrative chemical products

Central America's new coffee buzz: renewable energy

Boeing completes test flight with 'green diesel'

WATER WORLD
Pitt team publishes new findings from mind-controlled robot arm project

QinetiQ North America refurbishing, modernizing Talon robots used by the military

Robot named 'Athena' becomes first humanoid robot to pay for a seat on a flight

First steps for Hector the robot stick insect

WATER WORLD
295 MW German wind farm ready to go

Panama makes climate splash with wind energy

China snaps up UK wind farms

Poland faces EU fines over renewable energy failures

WATER WORLD
Swiss citizen dies in 50-car Slovenian highway crash

Dongfeng, Huawei partner for Internet-enabled cars

Rice study fuels hope for natural gas cars

Google self-driving car prototype ready to try road

WATER WORLD
Making a Good Thing Better for Lithium Ion Batteries

Computational clues into the structure of a promising energy conversion catalyst

Chinese power companies pursue smart grids

Scientists reveal breakthrough in optical fiber communications

WATER WORLD
Over 3,700 Fukushima Evacuees Yet to Claim Compensation

Ukraine shuts down faulty nuclear power plant reactor

Gas leak kills three at S. Korea nuclear plant

Ukraine signs Westinghouse nuclear fuel deal

WATER WORLD
House vows to deliver on energy promises

How Climate Change Could Leave Cities in the Dark

NYC owners should tap energy and economic benefits of cogeneration

The physics of champagne bubbles and our future energy needs

WATER WORLD
European fire ant impacts forest ecosystems by helping alien plants spread

Muddy forests, shorter winters present challenges for loggers

Ecuador returning German money in environment row

Clearing rainforests distorts wind and water, packs climate wallop beyond carbon




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.