Solar Energy News  
CLIMATE SCIENCE
Life under extreme drought conditions
by Staff Writers
Potsdam, Germany (SPX) Feb 28, 2018

File image.

The core region of the Atacama Desert in South America is one of the most arid places on earth. Sometimes it is raining only once in a decade or even less, the annual precipitation is far less than 20 mm. The dry conditions resulted in high salt concentrations in the soil and low organic matter content.

However, scientists have found microorganisms there. But it has remained unclear whether these environments support active microbial growth or whether the observed cells were introduced by wind transport and subsequently degraded.

Detailed analyses by an international research team show: Even in the most arid zones of the Atacama a microbial community exists which becomes metabolically active following episodic increase in moisture after rainfalls. The new findings, published in the journal PNAS, are important for evolution of life and landscapes on Earth. Moreover, the results have implications for the prospect of life on other planets - certainly for Mars.

The scientists took soil samples at six different locations in the Atacama Desert between 2015 and 2017. "We have chosen sample locations along a profile of decreasing moisture from the coast up to extreme arid conditions in the core region of the Atacama", explains first author Dirk Schulze-Makuch from the TU Berlin. "This gradient should be reflected in the life-friendly conditions - we call it habitability - as well as in the number and diversity of the microorganisms."

To get the whole picture the scientists used a broad range of complementary methods carried out at several geoscientific institutions in Berlin and Potsdam together with international partners. Amongst others the team conducted physico-chemical characterizations of the soil habitability and molecular biological studies. The latter were done mainly at GFZ German Research Centre for Geosciences in Potsdam where intracellular and extracellular DNA was analysed.

"With this method we can find out which microorganisms really exist at the different locations in the Atacama probably doing metabolism and which ones are only represented by their naked DNA in the sediment as a signal from the past," says Dirk Wagner, Head of GFZ-Section for Geomicrobiology and one of the leading authors of the article. "Further investigations like tests on enzymes have shown that the suspected organisms in most cases are in fact metabolically active."

To scientists it is not only important to know where microbial life exists, it is also relevant to know about changes over time. Here they were lucky: First sampling in April 2015 occurred shortly after an unexpected rain event. The moisture had positive effects on life and activity in the desert. This is documented in samples taken and analysed in the following years in February 2016 and January 2017.

"We can clearly show that some time after a precipitation event, the abundance and biological activity of microorganisms decreases", says Wagner. But the organisms, which are predominantly bacteria, do not completely die off. According to the authors, single-celled organisms are found mainly in the deeper layers of the Atacama Desert where they have formed active communities for millions of years and have evolved to cope with the harsh conditions.

The findings from the South American desert are very useful for the question of life on other planets, especially in relation to Mars. Martian climate was initially humid, rivers and lakes had existed before the desertification began. No rain can fall from the thin Martian atmosphere today but liquid water can be present near the surface due to nightly snowfall.

Additionally, there is fog and on some slopes also salty brines, which sporadically flow down and thus provide fluids. However, the exposure to hard radiation at the surface is much greater than on Earth. Based on the results of the study, the authors come to the conclusion: If life ever evolved on Mars in the past, under better conditions, it could have endured the transition to hyper-arid conditions and perhaps even be found in subsurface niches today.

Research Report: A Transitory Microbial Habitat in the Hyperarid Atacama Desert, Dirk Schulze-Makuch, Dirk Wagner, Samuel Kounaves et al., PNAS, DOI: 10.1073/pnas.1714341115


Related Links
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre
Climate Science News - Modeling, Mitigation Adaptation


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CLIMATE SCIENCE
Worsening Ethiopian drought threatens to end nomadic lifestyle
Dabafayed, Ethiopia (AFP) Feb 13, 2018
Down a sandy track past a desiccated animal carcass lies a cluster of half-built huts that Ethiopia's government and aid agencies hope will blunt the worsening toll of repeated droughts. The soon-to-be village of Dabafayed is intended as a new, permanent home for once-nomadic herders made destitute by the country's back-to-back droughts. The lifestyle change is drastic but necessary, officials say. "We can't talk about a normal state of affairs anymore when drought has become almost perennia ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CLIMATE SCIENCE
Evolution plays many tricks against large-scale bioproduction

Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

CLIMATE SCIENCE
Google Assistant adds more languages in global push

Brothers look to harness artificial intelligence for greater good

New stretchable electronic skin sensitive enough to feel ladybug footsteps

Artificial intelligence poses questions for nature of war: Mattis

CLIMATE SCIENCE
World's first floating wind farm put to the test

New wind farm construction starts in Italy

Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

CLIMATE SCIENCE
German court paves way for diesel driving bans

Car-mad Germany anxious as court to rule on diesel bans

Rome to ban diesel cars from 2024: mayor

Huawei's AI-powered smartphone drives a Porsche

CLIMATE SCIENCE
Scientists take step toward safer batteries by trimming lithium branches

Charging ahead to higher energy batteries

Shedding high-power laser light on the plasma density limit

New method for waking up devices

CLIMATE SCIENCE
Framatome completes purchase of Schneider Electric's instrumentation and control nuclear business

Greenpeace protesters jailed for French nuclear stunt

Austria sues over EU approval of Hungary nuclear plant

Researchers run first tests of unique system for welding highly irradiated metal alloys

CLIMATE SCIENCE
Grids from Turkmenistan, Afghanistan and Pakistan could be connected

Coal phase-out: Announcing CO2-pricing triggers divestment

State utilities called to pass U.S. tax benefits to consumers

Magnetic liquids improve energy efficiency of buildings

CLIMATE SCIENCE
Geological change confirmed as factor behind extensive diversity in tropical rainforests

Reforesting US topsoils store massive amounts of carbon, with potential for much more

Drier conditions could doom Rocky Mountain spruce and fir trees

Tropical trees use unique method to resist drought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.