Solar Energy News  
STELLAR CHEMISTRY
Lifting the veil on star formation in the Orion Nebula
by Staff Writers
Moffett Field CA (SPX) Jan 08, 2019

The powerful wind from the newly formed star at the heart of the Orion Nebula is creating the bubble (black) and preventing new stars from forming in its neighborhood. At the same time, the wind is pushing molecular gas (color) to the edges, creating a dense shell around the bubble where future generations of stars can form.

The stellar wind from a newborn star in the Orion Nebula is preventing more new stars from forming nearby, according to new research using NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA), whose science operations are managed by the Universities Space Research Association.

This is surprising because until now, scientists thought that other processes, such as exploding stars called supernovae, were largely responsible for regulating the formation of stars. But SOFIA's observations suggest that infant stars generate stellar winds that can blow away the seed material required to form new stars, a process called "feedback."

The Orion Nebula is among the best observed and most photographed objects in the night sky. It is the closest stellar nursery to Earth, and helps scientists explore how stars form. A veil of gas and dust makes this nebula extremely beautiful, but also shrouds the entire process of star birth from view. Fortunately, infrared light can pierce through this cloudy veil, allowing specialized observatories like SOFIA to reveal many of the star-formation secrets that would otherwise remain hidden.

At the heart of the nebula lies a small grouping of young, massive and luminous stars. Observations from SOFIA's instrument, the German Receiver for Astronomy at Terahertz Frequencies, known as GREAT, revealed, for the first time, that the strong stellar wind from the brightest of these baby stars, designated Theta1 Orionis C (?1 Ori C), has swept up a large shell of material from the cloud where this star formed, like a snow plow clearing a street by pushing snow to the road's edges.

"The wind is responsible for blowing an enormous bubble around the central stars," explained Cornelia Pabst, a Ph.D. student at the University of Leiden in the Netherlands and the lead author on the paper. "It disrupts the natal cloud and prevents the birth of new stars."

Researchers used the GREAT instrument on SOFIA to measure the spectral line - which is like a chemical fingerprint - of ionized carbon. Because of SOFIA's airborne location, flying above 99 percent of the water vapor in the Earth's atmosphere that blocks infrared light, researchers were able to study the physical properties of the stellar wind.

"Astronomers use GREAT like a police officer uses a radar gun," explained Alexander Tielens, an astronomer at Leiden Observatory and a senior scientist on the paper. "The radar bounces off your car, and the signal tells the officer if you're speeding."

Similarly, astronomers use the ionized carbon's spectral signature to determine the speed of the gas at all positions across the nebula and study the interactions between massive stars and the clouds where they were born. The signal is so strong that it reveals critical details and nuances of the stellar nurseries that are otherwise hidden. But this signal can only be detected with specialized instruments - like GREAT- that can study far-infrared light.

At the center of the Orion Nebula, the stellar wind from 1 Ori C forms a bubble and disrupts star birth in its neighborhood. At the same time, it pushes molecular gas to the edges of the bubble, creating new regions of dense material where future stars might form.

These feedback effects regulate the physical conditions of the nebula, influence the star formation activity, and ultimately drive the evolution of the interstellar medium, the space between stars filled with gas and dust. Understanding how star formation interacts with the interstellar medium is key to understanding the origins of the stars we see today, and those that may form in the future.

SOFIA is a Boeing 747SP jetliner modified to carry a 106-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA's Ames Research Center in California's Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is maintained and operated from NASA's Armstrong Flight Research Center Hangar 703, in Palmdale, California.


Related Links
Stratospheric Observatory for Infrared Astronomy (SOFIA)
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Next up: Ultracold simulators of super-dense stars
Houston TX (SPX) Jan 04, 2019
Rice University physicists have created the world's first laser-cooled neutral plasma, completing a 20-year quest that sets the stage for simulators that re-create exotic states of matter found inside Jupiter and white dwarf stars. The findings are detailed this week in the journal Science and involve new techniques for laser cooling clouds of rapidly expanding plasma to temperatures about 50 times colder than deep space. "We don't know the practical payoff yet, but every time physicists hav ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Tel Aviv researchers develop biodegradable plastic from seawater algae

A lung-inspired design turns water into fuel

Greener days ahead for carbon fuels

Obtaining polyester from plant oil

STELLAR CHEMISTRY
Breadmaking robot startup eyes fresh connections

Growing bio-inspired shapes with hundreds of tiny robots

Self-driving rovers tested in Mars-like Morocco

First Harris T7 bomb disposal robots sent to British army

STELLAR CHEMISTRY
Upwind wind plants can reduce flow to downwind neighbors

More than air: Researchers fine-tune wind farm simulation

Widespread decrease in wind energy resources found over the Northern Hemisphere

Wind power vulnerable to climate change in India

STELLAR CHEMISTRY
Sidestepping trade war, Musk breaks ground on Tesla Shanghai plant

German court opens way for diesel case against Daimler

GM and DoorDash to deliver food with self-driving cars

372,000 German drivers join legal action against Volkswagen

STELLAR CHEMISTRY
Unlocking new paths toward high-temperature superconductors

Spain's Valencia Port taps hydrogen to power operations

Lean electrolyte design is a game-changer for magnesium batteries

Researchers find alternative to pure platinum catalyst for hydrogen fuel cells

STELLAR CHEMISTRY
Why does nuclear fission produce pear-shaped nuclei?

Framatome develops mobile technology for non-destructive analysis of radioactive waste containers

The first new Generation 3 EPR nuclear reactor enters commercial operation

China powers up next-generation nuclear plant

STELLAR CHEMISTRY
US charges Chinese national for stealing energy company secrets

Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

STELLAR CHEMISTRY
Revised Brazilian forest code may lead to increased legal deforestation

Forest soundscapes could aid biodiversity studies and conservation

Trees' enemies help tropical forests maintain their biodiversity

Nine forest vital signs reveal the impacts of the climate









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.