Solar Energy News  
STELLAR CHEMISTRY
Light speed advances
by Maddy Lauria for UD News
Newark DE (SPX) Dec 03, 2021

Tingyi Gu, an assistant professor in UD's Department of Electrical and Computer Engineering, is working to control the direction of light in order to improve the energy efficiency of complex devices such as communication systems. She was recently awarded the Young Faculty Award by the Defense Advanced Research Projects Agency for her innovative work.

Every time someone sends a message or posts to TikTok, it takes thousands of optical and electrical connections to get that message through. But what if there was a way to manipulate the power of light to create technology that makes these connections more stable and more energy efficient?

That's precisely what Tingyi Gu is working on in the University of Delaware's Department of Electrical and Computer Engineering (ECE). But she's trying to control the direction of light for more important reasons than sharing the latest social media trend.

"Now is the era of information," said Gu. "This is specifically working with the power required to distribute that information, trying to reduce and improve that power efficiency."

Gu, a highly decorated early-career researcher who joined UD faculty in 2016, was recently awarded with the Young Faculty Award by the Defense Advanced Research Projects Agency (DARPA) to further her research on nanophotonics and silicon photonics to improve digital communications. The award, granted to more than a dozen early career researchers annually, aims to "identify and engage rising stars" and grant exposure to Department of Defense needs.

In her work, she's finding new, more efficient ways to engineer photonics, like the technology used in integrated circuits to convert signals from fiber to electric, like what happens each time signals go through a cell phone tower.

"The DARPA YFA is one of the top honors for early career faculty, where it is clear that Dr. Gu is recognized as one of the rising stars in optics and photonics," said Jamie Phillips, chair of ECE and a previous DARPA Young Faculty Award honoree. "The award not only provides recognition and resources to engage in fundamental research, but also to develop ideas in context of national security needs. Tingyi's project explores a unique optical interaction called a chiral exceptional point to advance photonic systems on a chip for applications including computing, communications and sensors."

To make improvements, Gu is using applied physics and the concept of chirality - which essentially determines the direction of an object - to manipulate the direction and speed of photons on a circuit. Instead of conventional systems that rely on fibers, Gu's design would rely on photonic signals, specifically designed to enhance power efficiency. This work can improve technologies used in communications devices by the military and beyond.

''This project has given me a great opportunity to explore and learn nanophotonics and integrated photonics," said Hwaseob Lee, the lead researcher on this project and who was recently awarded his doctorate on this topic. "Controlling the direction of light propagation on-chip is a new way for enhancing the device performance. I get to learn the end-to-end process of the design, numerical simulation, fabrication and testing of those specially designed chips.''

The award comes with about $500,000 in funding, which Gu said will support one postdoc and two graduate students working on device fabrications and new photonic designs, such as sensors used in optical communication systems like those used by aircraft, over the next two years.

During the two years of the project, Gu said she expects to develop a photonic design for computer chips that performs better and faster, while using less power. Modern-day data centers burn a significant amount of energy by running central processing units that rely on optical interconnections converting energy between wireless and fibers.

"Research is a bridge that connects theoretical knowledge and world applications. By understanding this connection, it is possible to create many fascinating tools to establish a better life," said graduate student Lorry Chang. "UD offers a lot of cool equipment to design, manufacture and analyze optical devices, just like people who use advanced tools in science fiction movies. Finally, I am very grateful to Dr. Gu for giving me the opportunity to participate in this interesting integrated photonic device project."

Cutting power consumption by even 10% by incorporating Gu's new technology could mean significant energy efficiency improvements by an order of magnitude, which could in turn address some climate change-related emissions. But in a relatively new field - these technologies have been around only since the 2000s - the cost of creating these kinds of photonic interconnect chips remains high.

"Scientists come up with fascinating ideas. It's an engineer's job to take those sprouted ideas into application to improve things in the real world," Gu said. "It's not guaranteed, but we know this is going to be significant in terms of power efficiency improvements."


Related Links
University Of Delaware
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Artificial material protects light states on smallest length scales
Paderborn, Germany (SPX) Dec 03, 2021
Light not only plays a key role as an information carrier for optical computer chips, but also in particular for the next generation of quantum computers. Its lossless guidance around sharp corners on tiny chips and the precise control of its interaction with other light are the focus of research worldwide. Scientists at Paderborn University have now demonstrated, for the very first time, the spatial confinement of a light wave to a point smaller than the wavelength in a 'topological photonic crys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
DARPA's ReSource Program turns waste into purified products, food

Oak Ridge National Laboratory, Tuskegee University collaborate on advanced bioderived materials research

Tasmania to be site of Australia's first bioLNG facility

Microbes can provide sustainable hydrocarbons for the petrochemical industry

STELLAR CHEMISTRY
Lightweight space robot with precise control developed

US proposes 'code of conduct' at UN for killer robots

COVID-19 mobile robot could detect and tackle social distancing breaches

Light-powered soft robots could suck up oil spills

STELLAR CHEMISTRY
DLR starts cooperation with ENERCON

RWE ups renewables investment as end to coal looms

Green hydrogen from expanded wind power in China

Scientists bring efficiency to expanding offshore wind energy

STELLAR CHEMISTRY
Autonomous passenger shuttle service trialled in Oxfordshire

China unveils new rules on ride-hailing drivers' rights

German prosecutors target former PSA group over diesel cheating

Austria's Greens halt controversial highway projects

STELLAR CHEMISTRY
Scientists identify another reason why batteries can't charge in minutes

Combined heat and power as a platform for clean energy systems

Battery 'dream technology' a step closer to reality with new discovery

Sodium-based material yields stable alternative to lithium-ion batteries

STELLAR CHEMISTRY
Researchers develop new membrane for uranium extraction from seawater

Framatome's fuel fabrication technology licensed for new Kazakhstan manufacturing facility

Framatome and Rosatom sign long-term cooperation agreement

Framatome delivers first machining simulators to the Louis Armand vocational school in Jeumont

STELLAR CHEMISTRY
30,000 UK homes still without power after storm

Accelerated renewables-based electrification paves the way for a post-fossil future

China's carbon emissions fall for first time since Covid lockdowns

Top banking regulator urges climate rules for lenders

STELLAR CHEMISTRY
Trees are biggest methane 'vents' in wetland areas - even when they're dry

Brazil burns boats in crackdown on wildcat Amazon gold miners

Colombia charges ex-rebels with Amazon destruction

Ottawa 'disappointed' by US decision to double Canadian lumber tariffs









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.