Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Light squeezed on a quantum scale
by Staff Writers
Brisbane, Australia (SPX) Sep 24, 2012


illustration only

An international team of physicists has pushed the boundaries on ultra-precise measurement by harnessing quantum light waves in a new way.

It is one thing to be able to measure spectacularly small distances using "squeezed" light, but it is now possible to do this even while the target is moving around.

An Australian-Japanese research collaboration made the breakthrough in an experiment conducted at the University of Tokyo, the results of which have been published in an article, "Quantum-enhanced optical phase tracking" in the prestigious journal, Science.

Leader of the international theoretical team Professor Howard Wiseman, from Griffith University's Centre for Quantum Dynamics, said this more precise technique for motion tracking will have many applications in a world which is constantly seeking smaller, better and faster technology.

"At the heart of all scientific endeavour is the necessity to be able to measure things precisely," Professor Wiseman said.

"Because the phase of a light beam changes whenever it passes through or bounces off an object, being able to measure that change is a very powerful tool."

"By using squeezed light we have broken the standard limits for precision phase tracking, making a fundamental contribution to science," he said. "But we have also shown that too much squeezing can actually hurt."

Dr Dominic Berry from Macquarie University has been collaborating with Professor Wiseman on the theory of this problem for many years.

"The key to this experiment has been to combine "phase squeezing" of light waves with feedback control to track a moving phase better than previously possible," Dr Berry said.

"Ultra-precise quantum-enhanced measurement has been done before, but only with very small phase changes. Now we have shown we can track large phase changes as well," he said.

Professor Elanor Huntington from UNSW Canberra, who directed the Australian experimental contribution, is a colleague of Professor Wiseman in the Centre for Quantum Computation and Communication Technology.

"By using quantum states of light we made a more precise measurement than is possible through the conventional techniques using laser beams of the same intensity," Professor Huntington said.

Curiously, we found that it is possible to have too much of a good thing. Squeezing beyond a certain point actually degrades the performance of the measurement making it less precise than if we had used light with no squeezing."

Participating research organisations: The University of Tokyo, Griffith University, Centre for Quantum Computation and Communication Technology (Australian Research Council), University of New South Wales (Canberra), Kyoto University, University of Waterloo (Ontario), Macquarie University, University of Queensland.

.


Related Links
Griffith University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Experiment in University of Florida laboratory corrects prediction in quantum theory
Gainesville, FL (SPX) Sep 21, 2012
An international team of scientists is rewriting a page from the quantum physics rulebook using a University of Florida laboratory once dubbed the coldest spot in the universe. Much of what we know about quantum mechanics is theoretical and tested via computer modeling because quantum systems, like electrons whizzing around the nucleus of an atom, are difficult to pin down for observation. ... read more


TIME AND SPACE
New Uses for Old Tools Could Boost Biodiesel Output

World's first biofuel jet flight to take off in Canada

Sorghum Eyed as a Southern Bioenergy Crop

EU confirms change in biofuel targets

TIME AND SPACE
Researchers Examine How Characteristics of Automated Voice Systems Affect Users' Experience

HF E Researchers Examine Older Adults' Willingness to Accept Help From Robots

NASA's 'Mighty Eagle' Robotic Prototype Lander Aces Major Exam

Japanese robot to sit top-ranked university exam

TIME AND SPACE
Wind power faces tax credit uncertainty

Sufficient wind energy available to meet global demands without damaging climate

Report backs greater role for wind energy

Wind could meet many times world's total power demand by 2030

TIME AND SPACE
Japan auto giants scale back China production

Obama to launch China WTO action on autos

Volvo Cars cuts consultant jobs

Engine for 1,000 mph car to be tested

TIME AND SPACE
Tanker runs aground off Estonia, no spill threat: police

Continental shelf exploration: are we ready for it?

EU: Reverse gas flows to Ukraine by 2014

New EU deep-water oil rules advance

TIME AND SPACE
Fishermen protest against Indian nuclear plant

23 nuclear power plants are in tsunami risk areas

Emirates, Saudis drive for nuclear power

Japan will go nuclear free, PM insists

TIME AND SPACE
Think twice before imposing carbon tariffs: researchers

Home sweet lab: Computerized house to generate as much energy as it uses

'Smart growth' strategies curb car use, greenhouse gas emissions

China to invest $3.5 bn in Zimbabwe power plant: report

TIME AND SPACE
Forest killer plant study explores rapid environmental change factors

Research study trees chopped down

Old Deeds, Witness Trees Offer Glimpse of Pre-settlement Forest in West Virginia

Trouble in paradise: Does nature worship harm the environment?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement