Subscribe free to our newsletters via your
. Solar Energy News .




NANO TECH
Light touch keeps a grip on delicate nanoparticles
by Staff Writers
Washington DC (SPX) May 08, 2012


NIST researchers' new approach to trapping nanoparticles uses a control and feedback system that nudges them only when needed, lowering the average intensity of the beam and increasing the lifetime of the nanoparticles while reducing their tendency to wander. On the left, 100-nanometer gold nanoparticles quickly escape from a static trap while gold nanoparticles trapped using the NIST method remained strongly confined. Credit: NIST.

Using a refined technique for trapping and manipulating nanoparticles, researchers at the National Institute of Standards and Technology (NIST) have extended the trapped particles' useful life more than tenfold. This new approach, which one researcher likens to "attracting moths," promises to give experimenters the trapping time they need to build nanoscale structures and may open the way to working with nanoparticles inside biological cells without damaging the cells with intense laser light.

Scientists routinely trap and move nanoparticles in a solution with "optical tweezers"-a laser focused to a very small point. The tiny dot of laser light creates a strong electric field, or potential well, that attracts particles to the center of the beam. Although the particles are attracted into the field, the molecules of the fluid they are suspended in tend to push them out of the well.

This effect only gets worse as particle size decreases because the laser's influence over a particle's movement gets weaker as the particle gets smaller. One can always turn up the power of the laser to generate a stronger electric field, but doing that can fry the nanoparticles too quickly to do anything meaningful with them-if it can hold them at all.

NIST researchers' new approach uses a control and feedback system that nudges the nanoparticle only when needed, lowering the average intensity of the beam and increasing the lifetime of the nanoparticle while reducing its tendency to wander. According to Thomas LeBrun, they do this by turning off the laser when the nanoparticle reaches the center and by constantly tracking the particle and moving the tweezers as the particle moves.

"You can think of it like attracting moths in the dark with a flashlight," says LeBrun. "A moth is naturally attracted to the flashlight beam and will follow it even as the moth flutters around apparently at random.

"We follow the fluttering particle with our flashlight beam as the particle is pushed around by the neighboring molecules in the fluid. We make the light brighter when it gets too far off course, and we turn the light off when it is where we want it to be. This lets us maximize the time that the nanoparticle is under our control while minimizing the time that the beam is on, increasing the particle's lifetime in the trap."

Using this method at constant average beam power, 100-nanometer gold particles remained trapped 26 times longer than had been seen in previous experiments. Silica particles 350 nanometers in diameter lasted 22 times longer, but with the average beam power reduced by 33 percent. LeBrun says that their approach should be able to be combined with other techniques to trap and hold even smaller nanoparticles for extended periods without damaging them.

"We're more than an order of magnitude ahead of where we were before," says LeBrun. "We now hope to begin building complex nanoscale devices and testing nanoparticles as sensors and drugs in living cells."

A. Balijepalli, J. Gorman, S. Gupta and T. LeBrun. Significantly Improved Trapping Lifetime of Nanoparticles in an Optical Trap using Feedback Control. Nano Letters. April 10, 2012.

.


Related Links
National Institute of Standards and Technology (NIST)
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances
Evanston IL (SPX) May 08, 2012
Traditional silicon-based integrated circuits are found in many applications, from large data servers to cars to cell phones. Their widespread integration is due in part to the semiconductor industry's ability to continue to deliver reliable and scalable performance for decades. However, while silicon-based circuits continue to shrink in size in the relentless pursuit of Moore's Law - the ... read more


NANO TECH
Better plants for biofuels

The Andersons Finalizes Purchase of Iowa Ethanol Plant

USA Leads World in Exports of Ethanol

Butamax Expands Early Adopters Group

NANO TECH
Game-powered machine learning opens door to Google for music

Terraforming a landscape for a robotic rover

Robot reveals the inner workings of brain cells

Japan's Sharp to sell talking robot vacuum cleaner

NANO TECH
NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

Scientists find night-warming effect over large wind farms in Texas

DoD, Navy and Wind Farm Developer Release Historic MoA

British engineering firm creates 1,000 wind farm jobs

NANO TECH
Toyota unveils 'first all-electric SUV'

Google self-driving car gets green light in Nevada

GM says China sales hit record high for April

Porsche says China sales drive profits sharply higher

NANO TECH
Power generation technology based on piezoelectric nanocomposite materials developed by KAIST

China to launch first deep-water oil rig

India tells US that Iran an important oil source

EU mulls punishing Argentina over YPF

NANO TECH
Bulgaria announces deal on debt for abandoned nuclear plant

Italy relives militancy fears with nuclear boss shooting

Japan switches off final nuclear reactor

Wash. nuclear cleanup plan criticized

NANO TECH
Grid upgrade to tap Ireland's renewables

Norway boasts world's largest carbon dioxide capture lab

Bolivia seizes Spanish electric company

Iraq aims to double power provision in a year

NANO TECH
Agroforestry is not rocket science but it might save DPR Korea

Handful of heavyweight trees per acre are forest champs

Green groups say Indonesia deforestation ban 'weak'

Bolivian natives begin new march in road protest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement