Subscribe free to our newsletters via your
. Solar Energy News .




ABOUT US
Lightweight skeletons of modern humans have recent origin
by Staff Writers
New York, NY (SPX) Dec 24, 2014


This illustration shows that modern people (right) have unusually low density in bones throughout the skeleton, including the hand bone joints (metacarpal heads) shown here. This new study found that bone joint density remained high throughout human evolution spanning millions of years, until it decreased significantly in recent modern humans, probably as a result of an increasingly sedentary lifestyle. From left to right: modern chimpanzee, Australopithecus, Neanderthal, and modern human. Image courtesy AMNH/J. Steffey. For a larger version of this image please go here.

New research shows that modern human skeletons evolved into their lightly built form only relatively recently--after the start of the Holocene about 12,000 years ago and even more recently in some human populations. The work, based on high-resolution imaging of bone joints from modern humans and chimpanzees as well as from fossils of extinct human species shows that for millions of years extinct humans had high bone density until a dramatic decrease in recent modern humans.

Published this week in the Proceedings of the National Academy of Sciences, the findings reveal a higher decrease in the density of lower limbs than in that of the upper limbs, suggesting that the transformation may be linked to humans' shift from a foraging lifestyle to a sedentary agricultural one.

"Despite centuries of research on the human skeleton, this is the first study to show that human skeletons have substantially lower density in joints throughout the skeleton, even in ancient farmers who actively worked the land," said Brian Richmond, an author of the study, curator in the American Museum of Natural History's Division of Anthropology, and a research professor at George Washington University.

Compared to our closest living relatives--chimpanzees--as well as to our extinct human ancestors, humans are unique in having an enlarged body size and lower-limb joint surfaces in combination with a relatively lightweight skeleton. But until now, scientists did not know that human bone joints are significantly less dense compared with those of other animals, or when during human evolution this unique characteristic first appeared.

"Our study shows that modern humans have less bone density than seen in related species, and it doesn't matter if we look at bones from people who lived in an industrial society or agriculturalist populations that had a more active life. They both have much less bone density," said Habiba Chirchir, lead author of the paper and a postdoctoral researcher at the Smithsonian Institution's National Museum of Natural History, who started the work at George Washington University with Richmond. "What we want to know now is whether this is an early human characteristic that defines our species."

To explore this question, Chirchir, Richmond, and an international team of researchers used high-resolution computed tomography and microtomography to measure trabecular, or spongy, bone of the limb joints in modern humans and chimpanzees, as well as in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus, Homo neanderthalensis, and early Homo sapiens.

Their results show that only recent modern humans have low trabecular density throughout limb joints, and that the decrease is especially pronounced in the lower joints--those in the hip, knee, and ankle--rather than the upper joints in the shoulder, elbow, and hand. The appearance of this anatomical change late in our evolutionary history may have been a result of the transition from a nomadic to a more settled lifestyle.

"Much to our surprise, throughout our deep past, we see that our human ancestors and relatives, who lived in natural settings, had very dense bone. And even early members of our species, going back 20,000 years or so, had bone that was about as dense as seen in other modern species," Richmond said. "But this density drastically drops off in more recent times, when we started to use agricultural tools to grow food and settle in one place."

This research provides an anthropological context to modern bone conditions like osteoporosis, a bone-weakening disorder that may be more prevalent in contemporary populations due partly to low levels of walking activity.

"Over the vast majority of human prehistory, our ancestors engaged in far more activity over longer distances than we do today," Richmond. "We cannot fully understand human health today without knowing how our bodies evolved to work in the past, so it is important to understand how our skeletons evolved within the context of those high levels of activity."

Other authors on the paper include Tracy Kivell, University of Kent and the Max Planck Institute for Evolutionary Anthropology; Christopher Ruff, Johns Hopkins University School of Medicine; Jean-Jacques Hublin, Max Planck Institute for Evolutionary Anthropology; Kristian Carlson, The University of the Witwatersrand and Indiana University; and Bernhard Zipfel, The University of the Witwatersrand.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Museum of Natural History
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ABOUT US
Commensal bacteria were critical shapers of early human populations
Washington DC (SPX) Dec 24, 2014
Using mathematical modeling, researchers at New York and Vanderbilt universities have shown that commensal bacteria that cause problems later in life most likely played a key role in stabilizing early human populations. The finding, published in mBio, the online open-access journal of the American Society for Microbiology, offers an explanation as to why humans co-evolved with microbes that can ... read more


ABOUT US
Guelph Researchers Recipe: Cook Farm Waste into Energy

Conversion process turns biomass 'waste' into lucrative chemical products

Central America's new coffee buzz: renewable energy

Boeing completes test flight with 'green diesel'

ABOUT US
Robot named 'Athena' becomes first humanoid robot to pay for a seat on a flight

First steps for Hector the robot stick insect

Early adoption of robotic surgery leads to organ preservation for kidney cancer patients

New 'electronic skin' for prosthetics, robotics detects pressure from different directions

ABOUT US
Panama makes climate splash with wind energy

China snaps up UK wind farms

Poland faces EU fines over renewable energy failures

Scotland claims leads in low-carbon agenda

ABOUT US
Honda to recall almost 570,000 vehicles in China

Rice study fuels hope for natural gas cars

Google self-driving car prototype ready to try road

Dongfeng, Huawei partner for Internet-enabled cars

ABOUT US
Chinese power companies pursue smart grids

NTU invents smart window that tints and powers itself

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel

New form of ice could help explore exciting avenues for energy production and storage

ABOUT US
Belgium seeks to push back closure of two nuclear plants

S. Korea heightens cyber security watch on hacking

S. Korea says nuclear reactors safe after cyber-attacks

First UAE nuclear plant to start in 2017: official

ABOUT US
How Climate Change Could Leave Cities in the Dark

The physics of champagne bubbles and our future energy needs

Global CO2 emissions increase to new all-time record, but growth is slowing

NYC owners should tap energy and economic benefits of cogeneration

ABOUT US
Ecuador returning German money in environment row

Clearing rainforests distorts wind and water, packs climate wallop beyond carbon

Seeing the forest for the trees

NASA Study Shows 13-year Record of Drying Amazon Caused Vegetation Declines




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.