Solar Energy News  
SOLAR DAILY
Lithuanian scientists' approach to perovskite solar cells - cheaper production and high efficiency
by Staff Writers
Kaunas, Lithuania (SPX) Dec 12, 2018

The molecule, synthesised by the KTU chemists, assembles itself into a monolayer, which can cover a variety of surfaces and can function as a hole transporting material in a perovskite solar cell.

A team of chemists from Kaunas University of Technology (KTU), Lithuania together with physicists from Helmholtz Zentrum Berlin (HZB) science institute, Germany are offering novel approach for the selective layer formation in perovskite solar cells. The molecule, synthesised by the KTU chemists, assembles itself into a monolayer, which can cover a variety of surfaces and can function as a hole transporting material in a perovskite solar cell. Less and cheaper materials are being used in the process.

Perovskite-based solar cells are fast forwarding to the front of emerging photovoltaics, already competing on efficiency against well-established solar technologies used in solar panels around the world. An important step towards mass production of this new generation solar cells is the development of efficient selective contact layers that would be compatible with the deposition of perovskite layers on various substrates.

Spin-coating and vapour deposition are the two main methods which are currently being used for the formation of the layers in perovskite solar cells. Spin-coating involves dripping liquid solution on spinning surfaces; during the process large quantities of the material is being lost. Vapour deposition needs high temperatures and complex vacuum technologies, besides, not all the molecules are suitable for evaporating.

KTU chemists have synthesised a molecule assembling itself into a monolayer, which can evenly cover any oxide surface - including textured surfaces of the silicon solar cells used in tandem architectures.

"It's not polymer, but smaller molecules, and the monolayer formed from them is very thin. This, and the fact that the monolayer is being formed through dipping the surface into the solution makes this method much cheaper than the existing alternatives. Also, the synthesis of our compound is a much shorter process than that of the polymer usually used in production of perovskite solar cells", says Ernestas Kasparavicius, PhD student at KTU Faculty of Chemical Technology.

The synthesised material had to be tested. The team of physicists of HZB in Berlin, Germany headed by Dr Steve Albrecht, in collaboration with KTU doctoral student Artiom Magomedov successfully used this new material as a hole transporting layer in perovskite solar cells.

"In our laboratory in Kaunas we studied use of the self-organising molecules to form the electrode layer as thin as 1-2 nm, evenly covering all the surface. During my internship in Berlin I was able to apply our material and to produce a first functioning solar element with just a monolayer-thick selective contact", says Magomedov, young researcher at KTU Faculty of Chemical Technology.

Professor Vytautas Getautis, who is the head of the research group behind the invention and the PhD research supervisor of Magomedov emphasises the input of the young scientists: "Usually it is so that the seasoned researchers are generating ideas and the youngsters are implementing them. However, in this case the young researchers have both generated the idea and realised it in solar element production".

Using self-assembling monolayer technique, not only extremely low material consumption is achieved, but also high efficiency - the element's power conversion efficiency was close to 18 %, which is exceptionally high for a new technology. Also, when self-assembling monolayer is used as a hole transporting layer in perovskite cells, no additives are needed to improve the performance of the cells. This might significantly improve the life span of the elements. Following initial success, scientists at KTU are synthesizing new materials for monolayer formation. Already the first tests of the optimized materials at HZB led to the over 21% efficient solar cells.

Research Report: "Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells"


Related Links
Kaunas University of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Sun-soaking device turns water into superheated steam
Boston MA (SPX) Dec 13, 2018
MIT engineers have built a device that soaks up enough heat from the sun to boil water and produce "superheated" steam hotter than 100 degrees Celsius, without any expensive optics. On a sunny day, the structure can passively pump out steam hot enough to sterilize medical equipment, as well as to use in cooking and cleaning. The steam may also supply heat to industrial processes, or it could be collected and condensed to produce desalinated, distilled drinking water. The researchers previous ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
More bioplastics do not necessarily contribute to better outcomes

WSU researchers reverse engineer way pine trees produce green chemicals worth billions

Agricultural waste drives us closer to greener transport

In Mauritius, sugar cane means money, renewable energy

SOLAR DAILY
Robot shown on Russian TV revealed to be man in costume

New models sense human trust in smart machines

Artificial joint restores wrist-like movements to forearm amputees

Norfolk Navy Shipyard introducing exoskeletons for workers

SOLAR DAILY
Widespread decrease in wind energy resources found over the Northern Hemisphere

Wind power vulnerable to climate change in India

Coordinated development could help wind farms be better neighbors

Roadmap to accelerate offshore wind industry in the United States

SOLAR DAILY
DNV GL forecasts rapid growth of electric vehicles: 50% of all new cars sold globally by 2033 to be electric

Uber filed paperwork for IPO: report

Lyft launches first step to take company public

Trump administration's fuel efficiency rollback 'deeply flawed': study

SOLAR DAILY
Switching to a home battery won't help save the world from climate change

Focusing on the negative is good when it comes to batteries

Yin and yang: Opposites in nature, fluoride and lithium, compete for higher energy batteries

Scientists enter unexplored territory in superconductivity search

SOLAR DAILY
GE Hitachi Nuclear Energy announces intent to acquire specialized expertise

Uranium in mine dust could dissolve in human lungs

Framatome signs MoU with Bruce Power for safety-related Life-Extension Program updates

Bulgaria leader opposed to increased carbon-cutting targets

SOLAR DAILY
Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

SOLAR DAILY
Brazil's Bolsonaro completes cabinet with rightist environment chief

Snowpack declines may stunt tree growth and forests' ability to store carbon emissions

Brazil's Bolsonaro blasts govt environmental agencies

Brazil loses 'one million football pitches' worth of forest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.