Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
MIPT researchers clear the way for fast plasmonic chips
by Staff Writers
Moscow, Russia (SPX) Aug 04, 2015


Operating principle of the proposed electrical pumping scheme.

Researches from the Laboratory of Nanooptics and Plasmonics at the MIPT Center of Nanoscale Optoelectronics have developed a new method for optical communication on a chip, which will give a possibility to decrease the size of optical and optoelectronic elements and increase the computer performance several tenfold. According to their article published in Optics Express, they have proposed the way to completely eliminate energy losses of surface plasmons in optical devices.

"Surface plasmon polaritons have previously been proposed to be used as information carriers for optical communication, but the problem is that the signal is rapidly attenuated propagating along plasmonic waveguides. Now, we have come very close to the complete solution of this problem. Our approach clears the way for the development of a new generation of high performance optoelectronic chips", says Dmitry Fedyanin, the head of the research.

Modern electronics is based on the use of electrons as information carriers, but they have ceased to meet the contemporary requirements: standard electrical copper wires and channels on chips cannot transfer information with speeds sufficient for modern microprocessors. This currently hinders the microprocessor performance growth; hence, the implementation of new groundbreaking technologies is required to maintain Moore's law.

Transition from electrical to optical pulses can solve the problem. The high frequency of light waves (hundreds of terahertz) allows transferring and processing more data, and, therefore, gives a possibility to increase performance.

Fiber optic technologies are widely used in communication networks, but the use of light in microprocessors and logical elements faces the problem of diffraction limit, since the size of waveguides and other optical elements cannot be significantly smaller than the light wavelength.

These are micrometers for near-infrared radiation used for optical communications, which doesn't meet the requirements of the contemporary electronics. Logical elements of standard contemporary processors are dozens of nanometers in size. "Optical electronics" can become competitive only if light is "compressed" to this scale.

Overcoming the diffraction limit is possible with transition from photons to surface plasmon polaritons, which are collective excitations emerging due to interaction between photons and electron oscillations on the boundary between a metal and an insulator.

They are also called quasi-particles, because, by their properties, they are quite similar to standard particles such as photons or electrons. Unlike three-dimensional light waves, surface polaritons "hold on" the boundary between two media. This gives a possibility to switch from the conventional three-dimensional optics to a two-dimensional optics.

"Roughly speaking, a photon occupies a certain volume in space, which is of the order of the light wavelength. We can "compress" it, transforming into a surface plasmon polariton. Using this approach, we can improve the integration density and reduce the size of optical elements.

Unfortunately, this brilliant solution has its flip side. For the surface plasmon polariton to exist, a metal, or more specifically, an electron gas in the metal, is needed. This leads to excessively high Joule losses similar to those one has when the current is passed through metal wires or resistors", says Dr. Fedyanin.

According to him, the surface plasmon energy drops a billion times at distances of around one millimeter due to absorption in the metal, which de facto makes the practical implementation of surface plasmons pointless.

"Our idea is to compensate the surface plasmon propagation losses by pumping extra energy to surface plasmon polaritons. It should be also noted that, if we want to integrate plasmonic waveguides on a chip, we can use only electrical pumping," explains the researcher.

He, together with his colleagues Dmitry Svintsov and Aleksey Arsenin from the Laboratory of Nanooptics and Plasmonics, has developed a new method of electric pumping of plasmonic waveguides based on the metal-insulator-semiconductor (MIS) structure and carried out its simulations. The results show that the passage of relatively weak pump currents through the nanoscale plasmonic waveguides give a possibility to fully compensate the surface plasmon propagation losses.

This means that it becomes possible to transmit a signal over long distances (in chip standards) with no losses. At the same time, the integration density of such active plasmonic waveguides is an order of magnitude higher than that of photonic waveguides.

"Working in optoelectronics, we always need to find a compromise between optical and electrical properties, whereas in plasmonics it is almost impossible, since the choice of metals is limited to three or four materials.

"The main advantage of the proposed pumping scheme is that it doesn't dependent on the properties of the metal-semico nductor contact. For each semiconductor, we can find an appropriate insulator, which allows to achieve the same efficiency level as in double-heterostructure lasers. At the same time, we are able to maintain the typical plasmonic structure size at a level of 100 nanometers," says Fedyanin.

The researches note that their results are awaiting an experimental verification, but the key difficulty has been eliminated.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Moscow Institute of Physics and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Small tilt in magnets makes them viable memory chips
Berkeley CA (SPX) Aug 04, 2015
University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits. The advance, to be reported in the Proceedings of the National Academy of Sciences, could lead to computers that turn on in an instant and operate with far greater speed and significant ... read more


CHIP TECH
Motile and cellulose degrading bacteria used for solid state cellulose hydrolysis

Pulse electric field enhances biogas yield in anaerobic digestion

Researchers use wastewater treatment to capture CO2, produce energy

Reproducible research for biofuels and biogas

CHIP TECH
Giving robots a more nimble grasp

Object recognition for robots

Robotic insect mimics Nature's extreme moves

Bio-inspired robots jump on water

CHIP TECH
Rhode Island to get offshore wind farm

Wind energy provides 8 percent of Europe's electricity

Siting wind farms more quickly, cheaply

Galapagos airport evolves to renewable energy only

CHIP TECH
Tesla loss widens as it gears for expansion

Car hack reveals peril on the road to Internet of Things

BMW says weaK China demand could hurt full-year earnings

Uber valuation tops $50 bn with latest funding: report

CHIP TECH
A zero-emission route to clean middle-distillate fuels from coal

EPA power act target of potential court action

New Zealand marks end to coal power

Wireless power transfer with magnetic field enhancement boosted

CHIP TECH
Health fallout from Fukushima mainly mental: studies

US Energy Department Offers $40Mln for New Nuclear Reactor Designs

Russia, Vietnam Sign Agreement on Construction of Nuclear Plant

Ex-Fukushima execs to be charged over nuclear accident

CHIP TECH
Qualified praise for Obama's clean power plan

Scottish energy sector draws Chinese interest

Study is first to quantify global population growth compared to energy use

British low-carbon policy criticized as window dressing

CHIP TECH
Myanmar amnesty frees Chinese loggers, political prisoners

Drivers of temporal changes in temperate forest plant diversity

Mangroves help protect against sea level rise

China ire as Myanmar jails scores for illegal logging




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.