Subscribe free to our newsletters via your
. Solar Energy News .




ROBO SPACE
MIT robot may accelerate trials for stroke medications
by Jennifer Chu for MIT News
Boston MA (SPX) Feb 12, 2014


After suffering a stroke, a patient learns to operate the robot MIT-Manus to improve mobility. Photo Courtesy of the researchers.

The development of drugs to treat acute stroke or aid in stroke recovery is a multibillion-dollar endeavor that only rarely pays off in the form of government-approved pharmaceuticals. Drug companies spend years testing safety and dosage in the clinic, only to find in Phase III clinical efficacy trials that target compounds have little to no benefit.

The lengthy process is inefficient, costly, and discouraging, says Hermano Igo Krebs, a principal research scientist in MIT's Department of Mechanical Engineering.

"Most drug studies failed and some companies are getting discouraged," Krebs says. "Many have recently abandoned the neuro area [because] they have spent so much money on developing drugs that don't work. They end up focusing somewhere else."

Now a robot developed by Krebs and his colleagues may help speed up drug development, letting pharmaceutical companies know much earlier in the process whether a drug will ultimately work in stroke patients.

To receive approval from the Food and Drug Administration, a company typically has to enroll 800 patients to demonstrate that a drug is effective during a Phase III clinical trial; this sample size is determined, in part, by the accuracy of standard outcome measurements, which quantify a patient's ability over time to, say, lift her arm past a certain point. A clinical trial can take several years to enroll appropriate patients, run tests, and perform analyses.

The study's authors found that by using a robot's measurements to gauge patient performance, companies might only have to test 240 patients to determine whether a drug works - a reduction of 70 percent that Krebs says would translate to a similar reduction in time and cost.

While pharmaceutical companies would still have to adhere to the FDA's established guidelines and outcome measurements to receive final drug approval, Krebs says they could use the robot measurements to guide early decisions on whether to further pursue or abandon a certain drug.

If, after 240 patients, a drug has no measurable effect, the company can pursue other therapeutic avenues. If, however, a drug improves performance in 240 robot-measured patients, the pharmaceutical company can continue investing in the trial with confidence that the drug will ultimately pass muster.

Creating a translator for stroke recovery
In their study, Krebs and his colleagues explored the robot MIT-Manus as a tool for evaluating patient improvement over time. The robot, developed by the team at MIT's Newman Laboratory for Biomechanics and Human Rehabilitation, has mainly been used as a rehabilitation tool: Patients play a video game by maneuvering the robot's arm, with the robot assisting as needed.

While the robot has mainly been used as a form of physical therapy, Krebs says it can also be employed as a measurement tool. As a patient moves the robot's arm, the robot collects motion data, including the patient's arm speed, movement smoothness, and aim. For the current study, the researchers collected such data from 208 patients who worked with the robot seven days after suffering a stroke, and continued to do so for three months.

The researchers created an artificial neural network map that relates a patient's motion data to a score that correlates with a standard clinical outcome measurement.

The authors then selected a separate group of nearly 3,000 stroke patients who did not use the robot, but who went through standard clinical tests. In particular, the researchers calculated the "effect size" - the difference in patient performance from the beginning to the end of a trial, divided by the standard deviation, or variability, of improvement among these patients. To determine whether a drug works, the FDA will often look to a study's effect size.

Using the robot-derived neural network map, the group calculated the effect size at twice the rate usually achieved with standard clinical outcome measurements, indicating that the robot scale demonstrated greater sensitivity in measuring patient recovery.

The study's authors went one step further and performed a power analysis that determines the optimal sample size for a given technique, finding that the robot scale would require only 240 patients to determine a drug's effectiveness - a reduction in sample size that would save a company up to 70 percent in time and cost.

Currently, only a few stroke drugs are in the late stages of development. However, once a company reaches a Phase III clinical trial, Krebs says it may use the MIT-Manus robot as a more efficient way to evaluate the drug's impact by employing the measurement techniques on a smaller group of patients.

The researchers have published their results in the journal Stroke.

.


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Scientists develop 'friendly' robot to improve human-android bond
Lincoln, England (UPI) Feb 6, 2013
British scientists say "friendly" robots are helping them to understand how more realistic relationships might be developed between humans and androids. A robot dubbed ERWIN (Emotional Robot with Intelligent Network) developed by computer scientists at the University of Lincoln is being used as part of a study to find out how some of the human-like thought biases in robot characteristic ... read more


ROBO SPACE
Waste from age-old paper industry becomes new source of solid fuel

Plastic shopping bags make a fine diesel fuel

Ceresana expects the market for bioplastics to grow

Approach helps identify new biofuel sources that don't require farmland

ROBO SPACE
Robotic construction crew needs no foreman

New system combines control programs so fleets of robots can collaborate

NASA Tests New Technologies for Robotic Refueling

MIT robot may accelerate trials for stroke medications

ROBO SPACE
Britain wind farm proposal scaled back in face of opposition

Climate risk from wind farms is minimal: study

Moventas CMaS gaining a strong foothold in Australia

Residents oppose new grid link needed for German energy transition

ROBO SPACE
World's largest EV fast charger network in China

Renault reports profit plunge, radar on China, shares rise

Nissan profit jumps as North America, China sales rise

Nissan caps buoyant earnings for Japanese auto giants

ROBO SPACE
Superconductivity in Orbit: Scientists Find New Path to Loss-Free Electricity

Giant leap for nuclear fusion as lasers blast new route to ultimate energy source

Starpower: Boost in quest for nuclear fusion

Minister claims Lebanon faces 'conspiracy' over gas fields

ROBO SPACE
Iran seeks new Russia reactor in exchange for oil

Fukushima should eye 'controlled discharges' in sea: IAEA

Japan to abandon troubled fast breeder reactor: report

Abe hails election of pro-nuclear Tokyo governor

ROBO SPACE
Chinese researchers propose energy strategy revamp

Amidst bitter cold and rising energy costs, new concerns about energy insecurity

Oil composition boost makes hemp a cooking contender

Spain to eliminate consumer electricity price auctions in April

ROBO SPACE
Controversial Malaysian state boss to resign

Tree roots in the mountains 'acted like a thermostat' for millions of years

NASA Study Points to Infrared-Herring in Apparent Amazon Green-Up

Puzzling 'greening' of Amazon rainforest in dry season an illusion




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.