Solar Energy News  
MU Engineers Develop Software Solution For Complex Space Missions

Craig Kluever said complex missions are launched roughly every three years with the goal of learning more about the origins of the universe. He said the mathematical principles behind the mission software developed at MU have been embraced primarily by the European Space Agency but thinks it could attract NASA's attention.
by Staff Writers
Columbia MO (SPX) Dec 04, 2007
Sending an unmanned spacecraft to the outer fringes of the solar system requires extensive planning. At the University of Missouri, engineers have developed an efficient and highly sophisticated mathematical algorithm (implemented as software) that determines the most efficient path for a spacecraft's journey from point A to point B - no matter how many worlds or years away.

In testing and validating the algorithm, Craig Kluever, professor of mechanical and aerospace engineering in the College of Engineering, and Aaron D. Olds, a former MU graduate student who collaborated on the project, focused on the 1997 Cassini Mission, which was one of the most complicated explorations ever. During a seven-year journey from Earth to Saturn, the orbiter flew past Venus, Earth and Jupiter. It twice flew by Venus.

"Along the way Cassini performed numerous gravity assists -close fly-by maneuvers that borrow energy from the planet and increase the speed of the spacecraft.

The trajectory generated by Kluever and Olds matched the one created by scientists at the Jet Propulsion Laboratory (JPL), which developed Cassini's route. Their mission-design software, which relies on optimization methods patterned from genetic evolution, makes sending a rover to Mars look relatively easy, Kluever said.

"You don't need complicated mission software for Mars missions," he said. "If you look at the trajectory, it doesn't require a lot of twists, turns and gravity assists. It's a straight shot.

"You need complicated mission software for ambitious missions to a comet, asteroid, moon of Saturn or beyond. We're talking about missions where an unmanned spacecraft would fly by Venus to do a gravity assist and then fly by Jupiter to do a gravity assist.

"Before that, it may have to coast a year and half to come back to Venus for another gravity assist. These very high-energy targets require orbital tricks. Timing all of these maneuvers to find the optimal solution is complicated."

Kluever said complex missions are launched roughly every three years with the goal of learning more about the origins of the universe. He said the mathematical principles behind the mission software developed at MU have been embraced primarily by the European Space Agency but thinks it could attract NASA's attention.

He said when NASA begins planning future robotic missions "it will need software like this to solve those types of problems. But a lot of it depends on what NASA's going to do with human space travel over the next 10 to 15 years."

The study, "Interplanetary Mission Design Using Differential Evolution," was published in the Journal of Spacecraft and Rockets.

Related Links
University of Missouri
Space Tourism, Space Transport and Space Exploration News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Europe's comet-chasing probe completes key flyby
Paris (AFP) Nov 14, 2007
A billion-euro (1.45-billion-dollar) European scout craft completed a crucial fly-by of Earth to pick up speed on its 10-year mission to rendezvous with a distant comet, the European Space Agency (ESA) said on Wednesday.







  • IAEA inspects Russian fuel for Iran: factory
  • French, Italian energy groups reach deal on nuclear cooperation
  • Seoul offers to use North Korean nuclear fuel rods: report
  • Two years to start Japan's giant nuke plant: expert

  • Australian PM ratifies Kyoto Protocol
  • WHRC Releases 4 Key Reports
  • Global warming is pushing edges of tropics towards poles: study
  • Improving Drought Forecasts

  • Toll Of Climate Change On World Food Supply Could Be Worse Than Thought
  • Scientists to discuss ways to 'climate-proof' crops
  • Noah's Flood Kick-Started European Farming
  • Greenpeace slams 'unsustainable' new tuna quota

  • Fossils Excavated From Bahamian Blue Hole May Give Clues Of Early Life
  • Leaving No Stone Unturned
  • Mountain Summits In The Alps Becoming Increasingly Similar
  • Wildlife Conservation Society Study Finds Seasonal Seas Save Corals With Tough Love

  • New Thermal Protection Technologies For Reusable Launch Vehicles To Be Validated
  • Defense Focus: Engineer truths -- Part 1
  • Northrop Grumman Demonstrates New Rocket Engine Design Using Oxygen And Methane Propellants
  • Indigenous Cryogenic Stage Successfully Qualified

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • China, Brazil give Africa free satellite land images
  • Ministerial Summit On Global Earth Observation System Of Systems
  • NASA-Conceived Map Of Antarctica Lays Ground For New Discoveries
  • Rosetta: Earth's True Colours

  • 40th Anniversary Of Australia's First Satellite
  • Blue Dye Could Hold The Key To Super Processing Power
  • ESA And Inmarsat Sign Innovative Alphasat Satellite Contract
  • Dude, Big Screen TVs, Flexible Electronics And Surfboards Made From Same New Material

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement