Solar Energy News  
TIME AND SPACE
Machine-learning methods lead to discovery of rare "quadruply imaged quasars"
by Staff Writers
Los Angeles CA (SPX) Apr 09, 2021

Four of the newfound quadruply imaged quasars are shown here: From top left and moving clockwise, the objects are: GraL J1537-3010 or "Wolf's Paw;" GraL J0659+1629 or "Gemini's Crossbow;" GraL J1651-0417 or "Dragon's Kite;" GraL J2038-4008 or "Microscope Lens." The fuzzy dot in the middle of the images is the lensing galaxy, the gravity of which is splitting the light from the quasar behind it in such a way to produce four quasar images. By modeling these systems and monitoring how the different images vary in brightness over time, astronomers can determine the expansion rate of the universe and help solve cosmological problems. The pictures of Wolf's Paw, Gemini's Crossbow, and Dragon's Kite were taken by the Pan-STARRS1 Sky Survey; and the picture of Microscope Lens was captured by Dark Energy Survey.

With the help of machine-learning techniques, a team of astronomers has discovered a dozen quasars that have been warped by a naturally occurring cosmic "lens" and split into four similar images. Quasars are extremely luminous cores of distant galaxies that are powered by supermassive black holes.

Over the past four decades, astronomers had found about 50 of these "quadruply imaged quasars," or quads for short, which occur when the gravity of a massive galaxy that happens to sit in front of a quasar splits its single image into four. The latest study, which spanned only a year and a half, increases the number of known quads by about 25 percent and demonstrates the power of machine learning to assist astronomers in their search for these cosmic oddities.

"The quads are gold mines for all sorts of questions. They can help determine the expansion rate of the universe, and help address other mysteries, such as dark matter and quasar 'central engines,'" says Daniel Stern, lead author of the new study and a research scientist at the Jet Propulsion Laboratory, which is managed by Caltech for NASA. "They are not just needles in a haystack but Swiss Army knives because they have so many uses."

The findings, to be published in The Astrophysical Journal, were made by combining machine-learning tools with data from several ground- and space-based telescopes, including the European Space Agency's Gaia mission; NASA's Wide-field Infrared Survey Explorer (or WISE); the W. M. Keck Observatory on Maunakea, Hawaii; Caltech's Palomar Observatory; the European Southern Observatory's New Technology Telescope in Chile; and the Gemini South telescope in Chile.

Cosmological Dilemma
In recent years, a discrepancy has emerged over the precise value of the universe's expansion rate, also known as Hubble's constant. Two primary means can be used to determine this number: one relies on measurements of the distance and speed of objects in our local universe, and the other extrapolates the rate from models based on distant radiation left over from the birth of our universe, called the cosmic microwave background. The problem is that the numbers do not match.

"There are potentially systematic errors in the measurements, but that is looking less and less likely," says Stern. "More enticingly, the discrepancy in the values could mean that something about our model of the universe is wrong and there is new physics to discover."

The new quasar quads, which the team gave nicknames such as Wolf's Paw and Dragon Kite, will help in future calculations of Hubble's constant and may illuminate why the two primary measurements are not in alignment. The quasars lie in between the local and distant targets used for the previous calculations, so they give astronomers a way to probe the intermediate range of the universe. A quasar-based determination of Hubble's constant could indicate which of the two values is correct, or, perhaps more interestingly, could show that the constant lies somewhere between the locally determined and distant value, a possible sign of previously unknown physics.

Gravitational Illusions
The multiplication of quasar images and other objects in the cosmos occurs when the gravity of a foreground object, such as a galaxy, bends and magnifies the light of objects behind it. The phenomenon, called gravitational lensing, has been seen many times before. Sometimes quasars are lensed into two similar images; less commonly, they are lensed into four.

"Quads are better than the doubly imaged quasars for cosmology studies, such as measuring the distance to objects, because they can be exquisitely well modeled," says co-author George Djorgovski, professor of astronomy and data science at Caltech. "They are relatively clean laboratories for making these cosmological measurements."

In the new study, the researchers used data from WISE, which has relatively coarse resolution, to find likely quasars, and then used the sharp resolution of Gaia to identify which of the WISE quasars were associated with possible quadruply imaged quasars. The researchers then applied machine-learning tools to pick out which candidates were most likely multiply imaged sources and not just different stars sitting close to each other in the sky. Follow-up observations by Keck, Palomar, the New Technology Telescope, and Gemini-South confirmed which of the objects were indeed quadruply imaged quasars lying billions of light-years away.

Humans and Machines Working Together
The first quad found with the help of machine learning, nicknamed Centaurus' Victory, was confirmed during an all-nighter the team spent at Caltech, with collaborators from Belgium, France, and Germany, while using a dedicated computer in Brazil, recalls co-author Alberto Krone-Martins of UC Irvine. The team had been remotely observing their objects using the Keck Observatory.

"Machine learning was key to our study but it is not meant to replace human decisions," explains Krone-Martins. "We continuously train and update the models in an ongoing learning loop, such that humans and the human expertise are an essential part of the loop. When we talk about 'AI' in reference to machine-learning tools like these, it stands for Augmented Intelligence not Artificial Intelligence."

"Alberto not only initially came up with the clever machine-learning algorithms for this project, but it was his idea to use the Gaia data, something that had not been done before for this type of project," says Djorgovski.

"This story is not just about finding interesting gravitational lenses," he says, "but also about how a combination of big data and machine learning can lead to new discoveries."

Research Report: "Gaia GraL: Gaia DR2 Gravitational Lens Systems. VI. Spectroscopic Confirmation and Modeling of Quadruply-Imaged Lensed Quasars"


Related Links
California Institute Of Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
New study sews doubt about the composition of 70 percent of our universe
Copenhagen, Denmark (SPX) Apr 01, 2021
Until now, researchers have believed that dark energy accounted for nearly 70 percent of the ever-accelerating, expanding universe. For many years, this mechanism has been associated with the so-called cosmological constant, developed by Einstein in 1917, that refers to an unknown repellant cosmic power. But because the cosmological constant - known as dark energy - cannot be measured directly, numerous researchers, including Einstein, have doubted its existence - without being able to sugge ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
WELTEC BIOPOWER delivers two biogas plants to Japan

Scientists turn beer waste into new protein sources, biofuels

Scientists turn fish parts into environmentally friendly plastic

Carbon-neutral 'biofuel' from lakes

TIME AND SPACE
NASA awards contract for communicationless coordination of robotic swarms

Report: U.S. military must speed up AI development to maintain edge

Hands-free: Monkey plays video game - with its brain

The ulti-mutt pet? Chinese tech company develops robo-dogs

TIME AND SPACE
US to invest heavily to boost offshore wind farms

TechnipFMC enters partnership with Magnora to develop floating offshore wind projects

Field study shows icing can cost wind turbines up to 80% of power production

BP enters UK offshore wind sector

TIME AND SPACE
Tesla slams German bureaucracy, offers reform proposals

Embattled Huawei plans push into smart-vehicle sector to survive

Uber entices drivers with $250 mn 'stimulus'

Intel to supply self-driving systems for delivery trucks

TIME AND SPACE
NASA seeks to create a better battery with SABERS

A new type of battery that can charge ten times faster than a lithium-ion battery created

New batteries give jolt to renewables, energy storage

Thermal power nanogenerator created without solid moving parts

TIME AND SPACE
BWXT awarded additional Nuclear Thermal Propulsion work for NASA

UAE begins commercial operations of first Arab nuclear plant

Framatome launches new subsidiary in Central Europe

New project to research nuclear decontamination robots

TIME AND SPACE
IMF, World Bank begin push to swap debt relief for green projects

China's bitcoin mining rush risks derailing climate goals

How Biden's infrastructure plan addresses the climate crisis

World Bank to align financing with Paris Climate Accord

TIME AND SPACE
Mapping North Carolina's ghost forests from 430 miles up

Sharp increase in destruction of virgin forest in 2020

Japan sees earliest cherry blossoms on record as climate warms

Coffee waste can accelerate the recovery of tropical forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.