Solar Energy News  
TIME AND SPACE
Magnetic fields at the crossroads
by Staff Writers
Washington DC (SPX) Mar 09, 2017


illustration only

From compasses used in ancient overseas navigation to electrical motors, sensors, and actuators in cars, magnetic materials have been a mainstay throughout human history. In addition, almost all information that exists in contemporary society is recorded in magnetic media, like hard drive disks.

A team of researchers at the Brazilian Center for Physics Research is studying the motion of vortex domain walls - local regions of charge that collectively store information via their configuration - driven by magnetic fields in ferromagnetic nanowires, which are configured in a straight line with an asymmetric Y-like branch. They discuss their work in this week's Journal of Applied Physics.

The question posed by the group was: What happens to the vortex wall when it meets the branch? Does it changes it direction or not, or could it be split in two walls?

"To make a simplistic parallel, if we imagine that the vortex wall is a tornado and the tornado is running on a straight road and encounters a cross-road, what happens next; can it split into two tornados?" said Luiz Sampaio, a researcher at the Brazilian Center for Physics Research in Rio De Janeiro.

Generally speaking, magnetic fields can be used to change the magnetization of a magnetic material, much like a bar magnet can magnetize an otherwise nonmagnetic sewing needle, and can even reverse its magnetization completely in some cases.

The process involved in magnetization reversal sometimes exhibits the nucleation and movement of these domain walls, which constitute the transition between two regions of charge magnetized in different directions.

Domain wall motion has been widely explored in ferromagnetic nanowires due to their high potential for applications in spintronic devices, those that use the quantum spin properties of electrons.

The control and manipulation of these domain walls is crucial for successful realizing magnetic memory, logic and sensors devices. By modifying the nanowire geometry, scientists hope to acquire a higher control of the domain wall motion and set a route towards achieving reliability in switching magnetization in ferromagnetic nanowires. The team devised a study using two steps.

"First, we fabricated samples using electron-beam lithography, magnetron sputtering and lift-off techniques," said Sampaio. After the nanometer-scale fabrication, they then measured the switching magnetization behavior mediated by the domain wall propagation.

The second step was to carry out micromagnetic simulations to guide and interpret the experimental results. "These two tools allowed us to study in detail the processes of vortex domain walls at the branch entrance," he said.

Moving forward, the team wants to understand whether the angle between the nanowire and branch can increase the asymmetric behavior at the branch entrance. This would increase the likelihood of observing only one type of vortex domain wall, clockwise or counterclockwise. This will require varying the nanowire angles with the branch to select the vortex chirality.

Understanding the dynamical aspects of vortex domain walls opens a route to better control of their motion and trajectory. This may be important for producing logic gates, which can be based on the domain wall motion in line with such branches.

The magnetization in the branches can be oriented in two different directions along the nanowire axis, where each direction would serve as the "0" and "1" necessary for data storage and processing.

"To provide the reliability needed for these applications, a higher degree of control in the magnetization switching is required, but to enhance the efficiency of the processes involved in the magnetization switching, the vortex domain wall seems to be a promising candidate," said Sampaio.

"Trajectory and chirality of vortex domain walls in ferromagnetic nanowires with an asymmetric Y-branch," is authored by Jeovani Brandao, Alexandre M. Silva, F. Garcia and Luiz C. Sampaio. The article will appear in Journal of Applied Physics March 7, 2017 (DOI: 10.1063/1.4976967).

TIME AND SPACE
Quantum entanglement between a single photon and a trillion of atoms
Warsaw, Poland (SPX) Mar 03, 2017
New light is shed on the famous paradox of Einstein, Podolsky and Rosen after 80 years. A group of researchers from the Faculty of Physics at the University of Warsaw has created a multidimensional entangled state of a single photon and a trillion of hot rubidium atoms. This hybrid entanglement has been stored in the laboratory for several microseconds. The research has been published in the pre ... read more

Related Links
American Institute of Physics
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Turning food waste into tires

New materials could turn water into the fuel of the future

Novel 3-D manufacturing leads to highly complex, bio-like materials

Tree growth model assists breeding for more wood

TIME AND SPACE
Robot uses social feedback to fetch objects intelligently

Switzerland taps Kongsberg for Protector weapon system

Shape-shifting molecular robots respond to DNA signals

Tracking the movement of cyborg cockroaches

TIME AND SPACE
Wind energy gaining traction, U.S. trade group says

French, Spanish companies set for more wind power off coast of France

German company to store US wind energy in batteries in Texas

Breakthrough research for testing and arranging vertical axis wind turbines

TIME AND SPACE
Australia sues Audi, Volkswagen over emissions cheating

Norway says half of new cars now electric or hybrid

Volkswagen to recall over 680,000 Audis in China

Pressure mounts on Uber and CEO after missteps

TIME AND SPACE
ABB delivers first urban battery storage solution in Denmark to support renewables

Confined nanoparticles improve hydrogen storage materials performance

New path suggested for nuclear fusion

Tweaking electrolyte makes better lithium-metal batteries

TIME AND SPACE
EU approves Hungary's Kremlin-backed nuclear plant

Areva narrows losses in 2016

Researchers find new clues for nuclear waste cleanup

Next generation of nuclear robots will go where none have gone before

TIME AND SPACE
New Zealand lauded for renewables, but challenges remain

EU parliament backs draft carbon trading reforms

Taiwan lantern makers go green for festival of lights

Republican ex-top diplomats propose a carbon tax

TIME AND SPACE
The battle to save Bangkok's 'Green Lung'

Ancient peoples shaped the Amazon rainforest

Indigenous protest in Honduras marks activist's murder

Forests to play major role in meeting Paris climate targets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.