Solar Energy News  
STELLAR CHEMISTRY
Magnetic fields in distant galaxy are new piece of cosmic puzzle
by Staff Writers
Madison WI (SPX) Aug 31, 2017


Light from the distant quasar 7.9 billion light-years away is bent and magnified in this schematic view by the foreground galaxy's mass 4.6 billion light-years away in a phenomenon called 'gravitational lensing.' Sight lines toward images A and B probe different magnetic fields and gas conditions through different parts of the lensing galaxy. Image courtesy of Sui Ann Mao

Astronomers have measured magnetic fields in a galaxy 4.6 billion light-years away - a big clue to understanding how magnetic fields formed and evolved over cosmic time. In an article published Aug. 28 in Nature Astronomy, a collaboration led by Sui Ann Mao, the Minerva Research Group leader at the Max Planck Institute for Radio Astronomy and a former postdoctoral Jansky Fellow at the University of Wisconsin-Madison, reports the discovery of large, well-ordered magnetic fields in a galaxy far, far away.

Because of the time it takes light to travel such immense distances, astrophysicists observe cosmologically distant magnetic fields as they were 4.6 billion years ago. The new observations provide hints at how magnetic fields have grown into galactic-sized structures since the beginning of the universe.

Like the humble refrigerator magnet, astronomical objects such as galaxies, stars, and even our own Earth have magnetic fields that attract and repel other magnets and electrically charged matter. Understanding magnetic fields is essential to understanding fundamental questions about the universe. Among other things, magnetic fields play a crucial role in the processes that form stars out of interstellar gas, determine how stars affect their surroundings, and indicate whether planets may or may not be habitable.

In the Big Bang theory for the origin of the universe, there were no magnetic fields in the cosmos. So when and how did magnetic fields arise? Scientists, including Mao's team, aim to answer the question by observing the strength and organization of magnetic fields in galaxies as far away - and therefore as far back in time - as possible, when the universe was much younger.

"By catching magnetic fields when they're so young, we can rule out some of the theories of where they come from," explains Ellen Zweibel, a professor of astronomy and physics at UW-Madison and a co-author of the new study.

Astronomers had measured large, well-ordered magnetic fields in our own Milky Way and in galaxies in our cosmic neighborhood before. But Mao's team is the first to successfully measure the magnetic field structure of a galaxy so distant in both space and time, pushing the boundaries of what's capable with current radio telescope technology and analysis techniques.

With the National Radio Astronomy Obesrvatory's Very Large Array, a collection of 27 radio telescopes in New Mexico arranged to function together as a single enormous telescope, Mao observed a distant galaxy with a specific configuration optimal for measuring the galaxy's magnetic fields.

The galaxy lies in front of a quasar, one of the brightest objects in the sky. The light from the quasar appears as two distinct images around the foreground galaxy, bent and magnified by the galaxy's mass in a phenomenon called gravitational lensing. Mao and her team measured how properties of the two images of the quasar differed, affected by the magnetic fields of the galaxy, to determine the strength and organization of those magnetic fields.

"It's a beautiful experiment," Zweibel says of Mao's experimental design. Zweibel explains that the setup eliminates the need to account for how looking through different parts of the Milky Way would affect the observations. Since the two views of the quasar are observed along two very close lines of sight through the Milky Way, they are affected in the same way and can be compared.

Mao first proposed this experiment to Zweibel when she was a postdoctoral scientist at UW-Madison. She says Madison is a stimulating environment for studying and discussing magnetic fields in the universe because of a critical mass of scientists researching the phenomenon and the annual Midwest Magnetic Fields Workshop that takes place in Madison.

"Madison is the magnetic fields capital of the USA - it's the place to go if you want to study magnetism," says Mao.

STELLAR CHEMISTRY
Kepler satellite discovers variability in the Seven Sisters
London, UK (SPX) Aug 28, 2017
The Seven Sisters, as they were known to the ancient Greeks, are now known to modern astronomers as the Pleiades star cluster - a set of stars which are visible to the naked eye and have been studied for thousands of years by cultures all over the world. Now Dr Tim White of the Stellar Astrophysics Centre at Aarhus University and his team of Danish and international astronomers have demonstrated ... read more

Related Links
University of Wisconsin-Madison
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Researchers identify cheaper, greener biofuels processing catalyst

Technique could aid mass production of biodegradable plastic

How a bacterium can live on methanol

Cyborg bacteria outperform plants when turning sunlight into useful compounds

STELLAR CHEMISTRY
Roboteam receives orders for tactical robots

New robot rolls with the rules of pedestrian conduct

Illinois researchers develop origami-inspired robot

Smart computers

STELLAR CHEMISTRY
Saudi Arabia shortlists 25 bidders for major wind plant

First foundations set for Baltic Sea wind farm

Wind energy blows up storm of controversy in Mexico

U.S. extends wind energy taproots into Zambia

STELLAR CHEMISTRY
Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil

New emissions test necessary for new vehicles in the EU

New liquid-metal membrane technology may help make hydrogen fuel cell vehicles viable

Uber to resume Philippine service 'soon' after fine

STELLAR CHEMISTRY
Silicon solves problems for next-generation battery technology

Recipe for safer batteries - Just add diamonds

Physicists find strange state of matter in superconducting crystal

No batteries required: Energy-harvesting yarns generate electricity

STELLAR CHEMISTRY
Kazakhstan inaugurates IAEA-backed nuclear fuel bank

2018 start for Russia-backed nuclear plant work:

Fukushima operator faces $5 bn US suit over 2011 disaster

UAE nuclear programme edges toward 2018 launch

STELLAR CHEMISTRY
ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

Power demand to peak in Europe summers, not winters: study

India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

STELLAR CHEMISTRY
Ancient trees reveal relationship between climate change, wildfires

Greenpeace steps up protest against Polish forest logging

Brazil's opening of Amazon to mining sets off alarm

Annual value of trees estimated at 500 million dollars per megacity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.