Solar Energy News  
CHIP TECH
Magnetic vortices come full circle
by Staff Writers
Villigen, Switzerland (SPX) Dec 01, 2020

The first experimental observation of three-dimensional magnetic 'vortex rings' provides fundamental insight into intricate nanoscale structures inside bulk magnets, and offers fresh perspectives for magnetic devices.

Magnets often harbour hidden beauty. Take a simple fridge magnet: Somewhat counterintuitively, it is 'sticky' on one side but not the other. The secret lies in the way the magnetisation is arranged in a well-defined pattern within the material.

More intricate magnetization textures are at the heart of many modern technologies, such as hard disk drives. Now, an international team of scientists at the Paul Scherrer Institute PSI, ETH Zurich, the University of Cambridge, the Donetsk Institute for Physics and Engineering and the Institute for Numerical Mathematics RAS in Moscow report the discovery of unexpected magnetic structures inside a tiny pillar made of the magnetic material gadolinium cobalt.

As they write in a paper published in the journal Nature Physics, the researchers observed sub-micrometre loop-shaped configurations, which they identified as magnetic vortex rings. Far beyond their aesthetic appeal, these textures might point the way to further complex three-dimensional structures arising in the bulk of magnets, and could one day form the basis for novel technological applications.

Mesmerising insights
Determining the magnetisation arrangement within a magnet is extraordinarily challenging, in particular for structures at the micro- and nanoscale, for which studies have been typically limited to looking at a shallow layer just below the surface. That changed in 2017 when researchers at PSI and ETH Zurich introduced a novel X-ray method for the nanotomography of bulk magnets, which they demonstrated in experiments at the Swiss Light Source SLS. That advance opened up a unique window into the inner life of magnets, providing a tool for determining three-dimensional magnetic configurations at the nanoscale within micrometre-sized samples.

Utilizing these capabilities, members of the original team, together with international collaborators, now ventured into new territory. The stunning loop shapes they observed appear in the same gadolinium cobalt micropillar samples in which they had before detected complex magnetic configurations consisting of vortices - the sort of structures seen when water spirals down from a sink - and their topological counterparts, antivortices.

That was a first, but the presence of these textures has not been surprising in itself. Unexpectedly, however, the scientists also found loops that consist of pairs of vortices and antivortices. That observation proved to be puzzling initially. With the implementation of novel sophisticated data-analysis techniques they eventually established that these structures are so-called vortex rings - in essence, doughnut-shaped vortices.

A new twist on an old story
Vortex rings are familiar to everyone who has seen smoke rings being blown, or who watched dolphins producing loop-shaped air bubbles, for their own amusement as much as to that of their audience.

The newly discovered magnetic vortex rings are captivating in their own right. Not only does their observation verify predictions made some two decades ago, settling the question whether such structures can exist. They also offered surprises. In particular, magnetic vortex rings have been predicted to be a transient phenomenon, but in the experiments now reported, these structures turned out to be remarkably stable.

The stability of magnetic vortex rings should have important practical implications. For one, they could potentially move through magnetic materials, as smoke rings move stably though air, or air-bubble rings through water.

Learning how to control the rings within the volume of the magnet can open interesting prospects for energy-efficient 3D data storage and processing. There is interest in the physics of these new structures, too, as magnetic vortex rings can take forms not possible for their smoke and bubble counterparts. The team has already observed some unique configurations, and going forward, their further exploration promises to bring to light yet more magnetic beauty.

Research paper


Related Links
Paul Scherrer Institute
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Spintronics advances controlling magnetization direction of magnetite at room temperature
Tokyo, Japan (SPX) Nov 18, 2020
Over the last few decades, conventional electronics has been rapidly reaching its technical limits in computing and information technology, calling for innovative devices that go beyond the mere manipulation of electron current. In this regard, spintronics, the study of devices that exploit the "spin" of electrons to perform functions, is one of the hottest areas in applied physics. But, measuring, altering, and, in general, working with this fundamental quantum property is no mean feat. Current s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Battered by virus and oil slump, biofuels fall out of favour

Catalyzing a zero-carbon world by harvesting energy from living cells

Microbe "rewiring" technique promises a boom in biomanufacturing

Tough, strong and heat-endure: Bioinspired material to oust plastics

CHIP TECH
Machine learning guarantees robots' performance in unknown territory

Robot dogs to enhance security at Tyndall AFB, Fla.

On the way to lifelike robots

Robotic AI learns to be spontaneous

CHIP TECH
Supersized wind turbines generate clean energy - and surprising physics

NREL advanced manufacturing research moves wind turbine blades toward recyclability

Policy, not tech, spurred Danish dominance in wind energy

California offshore winds show promise as power source

CHIP TECH
Tesla recalls 870 cars in China over defective roofs

GM quits Trump lawsuit against California auto emissions rules

Avoid being road kill author gets run over by Toyota

Switch to electric vehicles could 'end oil era': analysis

CHIP TECH
Researchers decipher structure of promising battery materials

Neutrinos yield first experimental evidence of catalyzed fusion dominant in many stars

Tesla to build 'world's largest' battery plant near Berlin

Chinese car battery maker eyes 2-bn-euro base in Germany

CHIP TECH
China's first domestically made nuclear reactor goes online

Study identifies reasons for soaring nuclear plant cost overruns in the US

Framatome joins Sizewell C Consortium to deliver low-carbon energy to the UK

Framatome's Le Creusot plant ramps up production of replacement components for French power stations

CHIP TECH
Sweden's LKAB to invest up to $46bn in fossil-free iron

Australia signals shift away from climate credit 'cheating'

Powering through the coming energy transition

Canada govt seeks carbon neutrality by 2050

CHIP TECH
Concrete jungle threatens mangroves on Pakistan island

Bolsonaro slams 'unjustified' attacks over Amazon deforestation

Los Angeles and Google partner on 'Tree Canopy' project

Bolsonaro vows to name and shame illegal wood importers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.