![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers West Lafayette IN (SPX) Nov 21, 2018
Until humans can find a way to geoengineer ourselves out of the climate disaster we've created, we must rely on natural carbon sinks, such as oceans and forests, to suck carbon dioxide out of the atmosphere. These ecosystems are deteriorating at the hand of climate change, and once destroyed they may not only stop absorbing carbon from the atmosphere, but start emitting it. Ecosystems that host a carbon-dioxide rich type of soil called peat, known as peatlands, are the most efficient natural carbon sink on the planet. When undisturbed, they store more carbon dioxide than all other vegetation types on Earth combined. But when they're drained and deforested, they can release nearly six percent of global carbon dioxide emissions each year. Climate researchers are worried that many of the peatlands soaking up carbon now will soon be doing the opposite. "Global peatlands cover only about 3 percent of global land area, but hold around 30 percent of the earth's soil organic carbon," said Qianlai Zhuang, a professor of earth, atmospheric and planetary sciences at Purdue University. "Peatlands act like a 'terrestrial ocean' because of their sequestering carbon, but will this large amount of peat carbon be released under a warmer climate, causing further warming?" In collaboration with Sirui Wang, a Ph.D. candidate at Purdue, Zhuang looked to peatlands in the Peruvian Amazon to try to answer this question. According to an earth systems model spanning from 12,000 years ago to 2100 AD, this relatively small basin could lose up to 500 million tons of carbon by the end of this century. That's about 5 percent of current global annual fossil fuel carbon emissions, or 10 percent of U.S. emissions, being spit back out into the atmosphere. By most estimates, South America will become both warmer and wetter by the end of the century. Zhuang's findings, which were published in Proceedings of the National Academy of Sciences on Monday, show that higher temperatures lead to more peat carbon loss, while increased precipitation slightly enhances the build-up of peat carbon over long timescales. Together, this is likely to increase carbon loss from peatlands to the atmosphere. Peatlands in northwest Peru remain nearly intact, but this is isn't the case in most places with significant peat stocks, which are being cleared to make room for agriculture. Peatlands in some parts of the world, including Canada, Siberia and Southeast Asia, have already turned into significant carbon sources. The same fate may be coming soon for the Peruvian peatlands. "If the area we looked at could represent the whole Amazonia or tropical peatlands, the loss of peat carbon to the atmosphere under future climate scenarios should be of great concern to our society," Zhuang said. "Agricultural intensification and increasing land-use disturbances, such as forest fires, threaten the persistence of peat carbon stocks. These peatland ecosystems may turn into carbon sources instead of sinks unless necessary actions are taken."
![]() ![]() Current climate models underestimate warming by black carbon aerosol St. Louis MO (SPX) Nov 20, 2018 Soot belches out of diesel engines, rises from wood- and dung-burning cookstoves and shoots out of oil refinery stacks. According to recent research, air pollution, including soot, is linked to heart disease, some cancers and, in the United States, as many as 150,000 cases of diabetes every year. Beyond its impact on health, soot, known as black carbon by atmospheric scientists, is a powerful global warming agent. It absorbs sunlight and traps heat in the atmosphere in magnitude second only to the ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |