Solar Energy News  
CHIP TECH
Making electronics out of coal
by Staff Writers
Boston MA (SPX) Apr 26, 2016


"When you look at coal as a material, and not just as something to burn, the chemistry is extremely rich," says Jeffrey Grossman. In this photo, a sample of pulverized coal (right) is shown with several test devices made from coal by the MIT researchers. Image courtesy of the researchers.

Jeffrey Grossman thinks we've been looking at coal all wrong. Instead of just setting it afire, thus ignoring the molecular complexity of this highly varied material, he says, we should be harnessing the real value of that diversity and complex chemistry. Coal could become the basis for solar panels, batteries, or electronic devices, he and his research team say.

As a first demonstration of what they see as a broad range of potential high-tech uses for this traditionally low-tech material, Grossman, doctoral student Brent Keller, and research scientist Nicola Ferralis have succeeded in making a simple electrical heating device that could be used for defrosting car windows or airplane wings, or as part of a biomedical implant.

In developing this initial application, they have also for the first time characterized in detail the chemical, electrical, and optical properties of thin films of four different kinds of coal: anthracite, lignite, and two bituminous types. Their findings have just been reported in the journal Nano Letters.

"When you look at coal as a material, and not just as something to burn, the chemistry is extremely rich," says Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems in the Department of Materials Science and Engineering (DMSE). The question he wanted to ask is, "Could we leverage the wealth of chemistry in things like coal to make devices that have useful functionality?" The answer, he says, is a resounding yes.

It turns out, for example, that naturally occurring coal varieties, without the purifying or refining that is needed to make electronic devices out of silicon, have a range of electrical conductivities that spans seven orders of magnitude (ten million times). That means that a given variety of coal could inherently provide the electrical properties needed for a particular component.

Designing a process
Part of the challenge was figuring out how to process the material, Grossman says. For that, Keller developed a series of steps to crush the material to a powder, put it in solution, then deposit it in thin uniform films on a substrate - a necessary step in fabricating many electronic devices, from transistors to photovoltaics.

Even though coal has been one of the most widely used substances by human beings for centuries, its bulk electronic and optical properties had never really been studied for the purpose of advanced devices.

"The material has never been approached this way before," says Keller, who carried out much of the work as part of his doctoral thesis in DMSE, "to find out what the properties are, what unique features there might be." To do so, he developed a method for making thin films, which could then be tested in detail and used for device fabrication.

Even this new, detailed characterization they carried out is just the tip of a large iceberg, the team says. The four varieties selected are just a few of the hundreds that exist, all with likely significant differences. And preparing and testing the samples was, from the outset, an unusual process for materials scientists.

"We usually want to make materials from scratch, carefully combining pure materials in precise ratios," says Ferralis, also in DMSE. In this case, though, the process involves "selecting from among this huge library of materials," all with their own different variations.

Using nature's complexity
While coal and other fossil fuels have long been used as feedstocks for the chemical industry, making everything from plastics to dyes and solvents, traditionally the material has been treated like other kinds of raw ore: something to be refined into its basic constituents, atoms, or simple molecules, which are then recombined to make the desired material.

Using the chemistries that nature has provided, just as they are, is an unusual new approach. And the researchers found that by simply adjusting the temperature at which the coal is processed, they could tune many of the material's optical and electrical properties to exactly the desired values.

The simple heating device the team made as a proof of principle provides an end-to-end demonstration of how to use the material, from grinding the coal, to depositing it as a thin film and making it into a functional electronic device. Now, they say, the doors are opened for a wide variety of potential applications through further research.

The big potential advantage of the new material, Grossman says, is its low cost stemming from the inherently cheap base material, combined with simple solution processing that enables low fabrication costs. Much of the expense associated with chip-grade silicon or graphene, for example, is in the purification of the materials.

Silica, the raw material for silicon chips, is cheap and abundant, but the highly refined form needed for electronics (typically 99.999 percent pure or more) is not. Using powdered coal could provide a significant advantage for many kinds of applications, thanks to the tunability of its properties, its high conductivity, and its robustness and thermal stability.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
'Odd couple' monolayer semiconductors align to advance optoelectronics
Oak Ridge TN (SPX) Apr 22, 2016
Epitaxy, or growing crystalline film layers that are templated by a crystalline substrate, is a mainstay of manufacturing transistors and semiconductors. If the material in one deposited layer is the same as the material in the next layer, it can be energetically favorable for strong bonds to form between the highly ordered, perfectly matched layers. In contrast, trying to layer dissimilar mater ... read more


CHIP TECH
Major advance in synthetic biochemistry holds promise for biofuels

Recyclable, sugar-derived foam as renewable alternative to polyurethanes

Enzyme leads scientists further down path to pumping oil from plants

Penn chemists lay groundwork for countless new, cleaner uses of methane

CHIP TECH
Robots could get 'touchy' with self-powered smart skin

University of Sussex research brings 'smart hands' closer to reality

Autonomous vehicles face test limits tto prove safety

Scientists invent robotic 'artist' that spray paints giant murals

CHIP TECH
El Hierro, the Spanish island vying for 100% clean energy

USGS finds cranes isolated from wind farms

Iowa puts faith in wind energy

Maryland praised for renewable energy efforts

CHIP TECH
More carmakers caught in VW engine-rigging scandal

Carmakers focus on China as scorching market slows

China's Tesla BYD has electric dreams

China could electrify global rechargeable car market

CHIP TECH
Tesla and other tech giants scramble for lithium as prices double

Stanford scientists use DNA to investigate cleaner energy sources

Princeton grad student writes program to help stabilize fusion plasma

Physicists build engine consisting of one atom

CHIP TECH
France's EDF to decide on UK nuclear project in September

Belgium rejects German call to shut down 2 nuclear reactors

France to lead 4 bn euro cash injection for EDF

Belgium rejects German call for nuclear plants closure

CHIP TECH
Global leaders agree to set price on carbon pollution

German power supplier RWE warns of 'horror scenario' for sector

Economic development does mean a greater carbon footprint

Study shows best way to reduce energy consumption

CHIP TECH
Clear-cutting destabilizes carbon in forest soils, Dartmouth study finds

Senegal environment ministry delegation arrested by Gambia

Activists appeal to EU over Polish logging of primeval forest

Trees trade carbon among each other









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.