Solar Energy News  
SOLAR DAILY
Material for polymer solar cells may lend itself to large-area processing
by Staff Writers
Washington DC (SPX) Aug 15, 2016


A demonstration solar park based on polymer solar cells at the Technical University of Denmark in Roskilde, Denmark. Image courtesy DTU Energy. For a larger version of this image please go here.

For all the promise they have shown in the lab, polymer solar cells still need to "get on a roll" like the ones employed in printing newspapers so that large sheets of acceptably efficient photovoltaic devices can be manufactured continuously and economically. Polymer solar cells offer advantages over their traditional silicon-based counterparts in numerous ways, including lower cost, potentially smaller carbon footprint and a greater variety of uses.

New research results reported by an international team led by the National Institute of Standards and Technology (NIST) indicate that the "sweet spot" for mass-producing polymer solar cells - a tantalizing prospect for decades - may be far larger than dictated by the conventional wisdom. In experiments using a mock-up of a high-volume, roll-to-roll processing method, the researchers produced polymer-based solar cells with a "power conversion efficiency" of better than 9.5 percent, just shy of the minimum commercial target of 10 percent.

That's almost as good as the small-batch devices made in the lab with spin-coating, a method that produces high-quality films in the laboratory but is commercially impractical since it wastes up to 90 percent of the initial ink.

Somewhat surprising to the researchers, their mass-produced versions exhibited molecular packing and texture that only slightly resembled that of lab-made varieties, which at their best convert about 11 percent of incident sunlight into electrical energy.

"The 'rule of thumb' has been that high-volume polymer solar cells should look just like those made in the lab in terms of structure, organization and shape at the nanometer scale," said Lee Richter, a NIST physicist who works on functional polymers. "Our experiments indicate that the requirements are much more flexible than assumed, allowing for greater structural variability without significantly sacrificing conversion efficiency."

"Efficient roll-to-roll fabrication is key to achieving the low-cost, high-volume production that would enable photovoltaics to scale to a significant fraction of global energy production," explained He Yan, a collaborator from Hong Kong University of Science and Technology.

The team experimented with a coating material composed of a fluorinated polymer and a fullerene (also known as a "buckyball"). Going by the technical name PffBT4T-2OD, the polymer is attractive for scaled production - achieving a reported power conversion efficiency of more than 11 percent. Importantly, it can be applied in relatively thick layers - conducive to roll-to-roll processing.

However, the top-performing solar cells were produced with the spin-coating method, a small-batch process. In spin coating, the fluid is dispensed onto the center of a disk or other substrate, which rotates to spread the material until the desired coating thickness is achieved. Besides generating lots of waste, the process is piecemeal - rather than continuous - and substrate size is limited.

So the research team opted to test commercially relevant coating methods, especially since PffBT4T-2OD can be applied in relatively thick layers of 250 nanometers and more, or roughly the size of a large virus. They started with blade-coating - akin to holding a knife edge at a fraction of a hair's breadth above a treated glass substrate as it slides by, painting the PffBT4T-2OD onto the substrate.

A series of X-ray-based measurements revealed that the temperature at which the PffBT4T-2OD was applied and dried significantly influenced the resultant coating's material structure - especially the orientation, spacing and distribution of the crystals that formed.

The substrates blade-coated at 90 degrees Celsius (194 degrees F) were the highest performing, achieving power conversion efficiencies that topped 9.5 percent. Surprisingly, at the nanometer level, the end products differed significantly from the spin-coated "champion" devices made in the lab. Detailed real-time measurements during both blade-coating and spin-coating revealed the different structures arose from the rapid cooling during spin-coating versus the constant temperature during blade-coating.

"Real-time measurements were critical to developing a proper understanding of the film formation kinetics and ultimate optimization," said Aram Amassian, a collaborator from Saudi Arabia's King Abdullah University of Science and Technology.

Encouraged by the results, the team performed preliminary measurements of PffBT4T-2OD coating formed on the surface of a flexible plastic sheet. The coating was applied on NIST's slot-die roll-to-roll coating line, directly mimicking large-scale production. Measurements confirmed that the material structures made with blade-coating and those made with slot-die-coating were nearly identical when processed at the same temperatures.

"It's clear that the type of processing method used influences the shape of the domains and their size distribution in the final coating, but these distinctly different morphologies do not necessarily undermine performance," said Harald Ade, a collaborator from North Carolina State University.

"We think these findings provide important clues for designing polymer solar cells optimized for roll-to-roll processing."

Article: H.W. Ro, J.M. Downing, S. Engmann, A.A. Herzing, D.M. DeLongchamp, L.J. Richter, S. Mukherjee, H. Ade, M. Abdelsamie, L.K. Jagadamma, A. Amassian, Y. Liu and H. Yan. 2016. Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy and Environmental Science. Published August 2, 2016. DOI: 10.1039/c6ee01623e


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
NREL technique leads to improved perovskite solar cells
Golden CO (SPX) Aug 15, 2016
Scientists at the Energy Department's National Renewable Energy Laboratory (NREL), in collaboration with researchers at Shanghai Jiao Tong University (SJTU), devised a method to improve perovskite solar cells, making them more efficient and reliable with higher reproducibility. The research, funded by the U.S. Department of Energy SunShot Initiative, involved hybrid halide perovskite solar ... read more


SOLAR DAILY
Biofuel production technique could reduce cost, antibiotics use

National Trust historic home enjoys 21st Century heat

Patented bioelectrodes have electrifying taste for waste

The Thai village using poop to power homes

SOLAR DAILY
China's Midea grabs near-95% stake in German firm Kuka

CSRA explores human-machine interaction for Air Force

New robot overcomes obstacles

First wave-propelled robot swims, crawls and climbs using a single, small motor

SOLAR DAILY
Wind power fiercer than expected

OX2 wins EPC contract for 112 MW wind power in Norway

E.ON starts new wind farm in Texas

Offshore wind the next big thing, industry group says

SOLAR DAILY
New Zealand offers electric vehicle stimulus

US finds evidence of criminality in VW probe: report

China auto sales surge 23% in July: industry group

NREL assesses strategies needed for light-duty vehicle greenhouse gas reduction

SOLAR DAILY
Making nail polish while powering fuel cells

Stanford-led team reveals nanoscale secrets of rechargeable batteries

Simulating complex catalysts key to making cheap, powerful fuel cells

Lithium-ion batteries: Capacity might be increased by 6 times

SOLAR DAILY
Nuclear Inspection Benefits from New Generation Sensor Lens

South Korea Relaunches Wolsong NPP's Reactor After Fixing Technical Problem

Japan reactor restarts in post-Fukushima nuclear push

Bulgaria seeks private money for nuclear plant

SOLAR DAILY
Low sales prices hit Czech power giant CEZ in H1

New MIT system can identify how much power is being used by each device in a household

ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

SOLAR DAILY
A plant present in Brazil is capable of colonizing deforested areas

Many more species at risk from Southeast Asia tree plantations, study finds

Drought conditions slow the growth of Douglas fir trees across the West

Early snowmelt reduces forests' atmospheric CO2 uptake









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.