Solar Energy News  
TECH SPACE
Materials informatics reveals new class of super-hard alloys
by Staff Writers
Bethlehem PA (SPX) Jun 17, 2019

An X-ray energy-dispersive spectroscopy (EDS) map of the as-cast microstructure of a hard alloy predicted from Lehigh University researchers' analysis. Lettered panels are X-ray intensity maps associated with different elements comprising the alloy that permit deduction of the spatial distributions of these elements.

A new method of discovering materials using data analytics and electron microscopy has found a new class of extremely hard alloys. Such materials could potentially withstand severe impact from projectiles, thereby providing better protection of soldiers in combat. Researchers from Lehigh University describe the method and findings in an article, "Materials Informatics For the Screening of Multi-Principal Elements and High-Entropy Alloys," that appears in Nature Communications.

"We used materials informatics - the application of the methods of data science to materials problems - to predict a class of materials that have superior mechanical properties," said primary author Jeffrey M. Rickman, professor of materials science and engineering and physics and Class of '61 Professor at Lehigh University.

Researchers also used experimental tools, such as electron microscopy, to gain insight into the physical mechanisms that led to the observed behavior in the class of materials known as high-entropy alloys (HEAs). High-entropy alloys contain many different elements that, when combined, may result in systems having beneficial and sometimes unexpected thermal and mechanical properties. For that reason, they are currently the subject of intense research.

"We thought that the techniques that we have developed would be useful in identifying promising HEAs," Rickman said. "However, we found alloys that had hardness values that exceeded our initial expectations. Their hardness values are about a factor of 2 better than other, more typical high-entropy alloys and other relatively hard binary alloys."

All seven authors are from Lehigh University, including Rickman; Helen M. Chan, New Jersey Zinc Professor of materials science and engineering; Martin P. Harmer, Alcoa Foundation Professor of materials science and engineering; Joshua Smeltzer, graduate student in materials science and engineering; Christopher Marvel, postdoctoral research associate in materials science and engineering; Ankit Roy, graduate student in mechanical engineering and mechanics; and Ganesh Balasubramanian, assistant professor of mechanical engineering and mechanics.

Rise of High-Entropy Alloys and Data Analysis
The field of high-entropy, or multi-principal element, alloys has recently seen exponential growth. These systems represent a paradigm shift in alloy development, as some exhibit new structures and superior mechanical properties, as well as enhanced oxidation resistance and magnetic properties, relative to conventional alloys. However, identifying promising HEAs has presented a daunting challenge, given the vast palette of possible elements and combinations that could exist.

Researchers have sought a way to identify the element combinations and compositions that lead to high-strength, high-hardness alloys and other desirable qualities, which are a relatively small subset of the large number of potential HSAs that could be created.

In recent years, materials informatics, the application of data science to problems in materials science and engineering, has emerged as a powerful tool for materials discovery and design. The relatively new field is already having a significant impact on the interpretation of data for a variety of materials systems, including those used in thermoelectrics, ferroelectrics, battery anodes and cathodes, hydrogen storage materials, and polymer dielectrics.

"Creation of large data sets in materials science, in particular, is transforming the way research is done in the field by providing opportunities to identify complex relationships and to extract information that will enable new discoveries and catalyze materials design," Rickman said.

The tools of data science, including multivariate statistics, machine learning, dimensional reduction and data visualization, have already led to the identification of structure-property-processing relationships, screening of promising alloys and correlation of microstructure with processing parameters.

Lehigh University's research contributes to the field of materials informatics by demonstrating that this suite of tools is extremely useful for identifying promising materials from among myriad possibilities. "These tools can be used in a variety of contexts to narrow large experimental parameter spaces to accelerate the search for new materials," Rickman said.

New Method Combines Complementary Tools
Lehigh University researchers combined two complementary tools to employ a supervised learning strategy for the efficient screening of high-entropy alloys and to identify promising HEAs: (1) a canonical-correlation analysis and (2) a genetic algorithm with a canonical-correlation analysis-inspired fitness function.

They implemented this procedure using a database for which mechanical property information exists and highlighting new alloys with high hardnesses. The methodology was validated by comparing predicted hardnesses with alloys fabricated in a laboratory using arc-melting, identifying alloys with very high measured hardnesses.

"The methods employed here involved a novel combination of existing methods adapted to the high-entropy alloy problem," Rickman said. "In addition, these methods may be generalized to discover, for example, alloys having other desirable properties. We believe that our approach, which relies on data science and experimental characterization, has the potential to change the way researchers discover such systems going forward."

Research Report: Materials Informatics For the Screening of Multi-Principal Elements and High-Entropy Alloys


Related Links
Lehigh University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
One more time: 2020 Olympic podiums to be made from recycled plastic
Tokyo (AFP) June 11, 2019
Podiums at the Tokyo 2020 Olympics will be made from plastic waste donated by local residents or collected from the sea, organisers said Tuesday, as part of a sustainability push. It will be the first time podiums have been made from recycled materials and organisers say they will need about 45 tonnes of plastic to fashion around 100 podiums for the Games. Tokyo 2020 CEO Toshiro Muto said the plan would help push a message of sustainability, which organisers want to be a key theme of the Games n ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
New core-shell catalyst for ethanol fuel cells

One-two-punch catalysts trapping CO2 for cleaner fuels

Plastic water bottles may one day fly people cross-country

Fuels out of thin air: New path to capturing and upgrading CO2

TECH SPACE
Investing in Tech Concepts Aimed at Exploring Lunar Craters, Mining Asteroids

Army project develops agile scouting robots

Better together: human and robot co-workers

British art dealer unveils pioneering robot artist

TECH SPACE
Can sound protect eagles from wind turbine collisions?

UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

TECH SPACE
Fiat Chrysler taps Aurora for self-driving commercial vehicles

BMW partners Jaguar Land Rover to develop electric engine

Uber names Melbourne as first non-US city for flying car program

Car firms call on Trump to keep emission limits

TECH SPACE
Researchers introduce novel heat transport theory in quest for efficient thermoelectrics

AI and high-performance computing extend evolution to superconductors

Scientists found a way to increase the capacity of energy sources for portable electronics

Flexible generators turn movement into energy

TECH SPACE
Framatome receives DoE GAIN voucher to support development of Lightbridge Fuel

GE Hitachi begins vendor review of its BWRX-300 SMR with Canada's nuclear commission

World's second EPR nuclear reactor starts work in China

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy

TECH SPACE
Canada must double its carbon tax to reach emissions target

Florida air conditioning pioneer first dismissed as a crank

Speed bumps on German road to lower emissions

World nations failing the poorest on energy goals: study

TECH SPACE
Big brands breaking pledge to not destroy forests: report

Some older forests better suited to change with the climate

Sri Lanka to ban chainsaws, timber mills: president

A forest 'glow' reveals awakening from hibernation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.