Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Mathematicians can conjure matter waves inside an invisible hat
by Staff Writers
Seattle WA (SPX) May 31, 2012


This graphic shows a matter wave hitting a Schrodinger's hat. The wave inside the container is magnified. Outside, the waves wrap as if they had never encountered any obstacle. Credit: G. Uhlmann, U. of Washington.

Invisibility, once the subject of magic or legend, is slowly becoming reality. Over the past five years mathematicians and other scientists have been working on devices that enable invisibility cloaks - perhaps not yet concealing Harry Potter, but at least shielding small objects from detection by microwaves or sound waves.

A University of Washington mathematician is part of an international team working to understand invisibility and extend its possible applications. The group has now devised an amplifier that can boost light, sound or other waves while hiding them inside an invisible container.

"You can isolate and magnify what you want to see, and make the rest invisible," said corresponding author Gunther Uhlmann, a UW mathematics professor. "You can amplify the waves tremendously. And although the wave has been magnified a lot, you still cannot see what is happening inside the container."

The findings were published this week in the Proceedings of the National Academy of Sciences.

As a first application, the researchers propose manipulating matter waves, which are the mathematical description of particles in quantum mechanics. The researchers envision building a quantum microscope that could capture quantum waves, the waves of the nanoworld. A quantum microscope could, for example, be used to monitor electronic processes on computer chips.

The authors dubbed their system "Schrodinger's hat," referring to the famed Schrodinger's cat in quantum mechanics. The name is also a nod to the ability to create something from what appears to be nothing.

"In some sense you are doing something magical, because it looks like a particle is being created. It's like pulling something out of your hat," Uhlmann said.

Matter waves inside the hat can also be shrunk, though Uhlmann notes that concealing very small objects "is not so interesting."

Uhlmann, who is on leave at the University of California, Irvine, has been working on invisibility with fellow mathematicians Allan Greenleaf at the University of Rochester, Yaroslav Kurylev at University College London in the U.K., and Matti Lassas at the University of Helsinki in Finland, all of whom are co-authors on the new paper.

The team helped develop the original mathematics to formulate cloaks, which must be realized using a class of engineered materials, dubbed metamaterials, that bend waves so that it appears as if there was no object in their path. The international team in 2007 devised wormholes in which waves disappear in one place and pop up somewhere else.

For this paper, they teamed up with co-author Ulf Leonhardt, a physicist at the University of St. Andrews in Scotland and author on one of the first papers on invisibility.

Recent progress suggests that a Schrodinger's hat could, in fact, be built for some types of waves.

"From the experimental point of view, I think the most exciting thing is how easy it seems to be to build materials for acoustic cloaking," Uhlmann said.

Wavelengths for microwave, sound and quantum matter waves are longer than light or electromagnetic waves, making it easier to build the materials to cloak objects from observation using these phenomena.

"We hope that it's feasible, but in science you don't know until you do it," Uhlmann said. Now that the paper is published, they hope to find collaborators to build a prototype.

.


Related Links
University of Washington
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
VTT researcher finds explanation for friction
Helsinki, Finland (SPX) May 31, 2012
Friction is a key phenomenon in applied physics, whose origin has been studied for centuries. Until now, it has been understood that mechanical wear-resistance and fluid lubrication affect friction, but the fundamental origin of sliding friction has been unknown. Dr. Lasse Makkonen, Principal Scientist at VTT Technical Research Centre of Finland, has now presented an explanation for the or ... read more


TECH SPACE
Nuisance seaweed found to produce compounds with biomedical potential

Maps of Miscanthus genome offer insight into grass evolution

Relative reference: Foxtail millet offers clues for assembling the switchgrass genome

Lawrence Livermore work may improve the efficiency of the biofuel production cycle

TECH SPACE
Robotic jellyfish could one day patrol oceans, clean oil spills, and detect pollutants

Graphene-control cutting using an atomic force microscope-based nanorobot

Rescue robot tested at So. Calif. beach

DLR presents innovations in robotics at AUTOMATICA 2012

TECH SPACE
US slaps duties on Chinese wind towers

Obama pushes for wind power tax credit

US DoI Approves Ocotillo Express Wind Project

Opening Day Draws Close for Janneby Wind Testing Site

TECH SPACE
Japan's vehicle output soars 174% in April

Japan's April auto output soars in year after quake

Ferrari recalls 56 cars in China: state media

Toyota overtakes GM, regains number one spot

TECH SPACE
Iraq plans energy auction after lacklustre sale

Iran Guards chief visits disputed Gulf islands

Major Investors Back IEA Call for 'Golden Rules'

Oil firms shun Iraq's 4th energy auction

TECH SPACE
South Korean nuclear engineers charged with cover-up

Russian-made metal used at Bulgaria nuclear plant meets quality standards

Japan PM says close to reactor restart decision

Japan to decide on nuclear power restart

TECH SPACE
Indonesia to tap its geothermal supply

Greener, More Efficient Lighting

Thailand's PTTEP, Myanmar to sign contract

Germany needs 20 bn euro investment in power grid: operator

TECH SPACE
Greenpeace says KFC boxes destroy Indonesia forests

Beetle-infested Pine Trees Contribute to Air Pollution and Haze in Forests

Beetle-infested pine trees contribute more to air pollution and haze in forests

Forest diversity from Canada to the sub-tropics influenced by family proximity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement