Solar Energy News
CARBON WORLDS
Max-Planck-Institute Breakthrough: Integrating Synthetic CO2 Fixation in E. coli
E.coli file illustration only
Max-Planck-Institute Breakthrough: Integrating Synthetic CO2 Fixation in E. coli
by Robert Schreiber
Marburg, Germany (SPX) Jan 03, 2024

Researchers at the Max-Planck-Institute for Terrestrial Microbiology have achieved a significant milestone in synthetic biology by developing a novel biochemical pathway that converts carbon dioxide (CO2) directly into acetyl-CoA, a key metabolic building block. This development marks a major advancement in synthetic CO2 fixing pathways within living cells, specifically in the bacterium E. coli.

The climate emergency has intensified the need for innovative solutions for CO2 capture and conversion. Synthetic biology offers new avenues for designing CO2-fixation pathways that are more efficient than those found in nature. However, implementing these new pathways in various in vitro and in vivo systems poses significant challenges. The group led by Tobias Erb has made a breakthrough in this field by designing and constructing a new synthetic CO2-fixation pathway, named the THETA cycle.

The THETA cycle is distinctive in its ability to convert two CO2 molecules into one molecule of acetyl-CoA in a single cycle. Acetyl-CoA is a central metabolite in nearly all forms of cellular metabolism and is crucial for the synthesis of various biomolecules, including biofuels, biomaterials, and pharmaceuticals. This makes it an exceptionally valuable compound in biotechnological applications.

The cycle was designed around two of the fastest known CO2-fixing enzymes: crotonyl-CoA carboxylase/reductase and phosphoenolpyruvate carboxylase. These powerful biocatalysts, found in bacteria, can capture CO2 more than ten times faster than the enzyme RubisCO, which is responsible for CO2 fixation in chloroplasts during natural photosynthesis.

In the laboratory, the functionality of the THETA cycle was confirmed in test tubes. Following this, the researchers embarked on a series of rational and machine learning-guided optimizations, which led to a hundredfold increase in the acetyl-CoA yield. The next critical step was to test its feasibility in vivo, for which the cycle was divided into three modules. Each module was successfully incorporated into E. coli, and their functionality was verified through growth-coupled selection and isotopic labelling.

Shanshan Luo, the lead author of the study, highlighted the uniqueness of the cycle, stating, "What is special about this cycle is that it contains several intermediates that serve as central metabolites in the bacterium's metabolism. This overlap offers the opportunity to develop a modular approach for its implementation." Luo noted the successful demonstration of the three individual modules in E. coli but also acknowledged that closing the entire cycle in vivo remains a significant challenge, given the need to synchronize the 17 reactions with the natural metabolism of E. coli, which involves hundreds to thousands of reactions.

Despite these challenges, Luo sees great potential in the cycle, envisioning it as a versatile platform for producing valuable compounds directly from CO2 by extending its output molecule, acetyl-CoA.

Tobias Erb emphasized the importance of this achievement in the field of synthetic biology. "Bringing parts of the THETA cycle into living cells is an important proof-of-principle," he said. "Such modular implementation of this cycle in E. coli paves the way to the realization of highly complex, orthogonal new-to-nature CO2-fixation pathways in cell factories. We are learning to completely reprogram the cellular metabolism to create a synthetic autotrophic operating system for the cell."

This research not only demonstrates a novel approach to CO2 fixation but also opens the door to potentially transformative applications in biotechnology, addressing the urgent need for sustainable solutions in the face of the global climate crisis.

Research Report:Construction and modular implementation of the THETA cycle for synthetic CO2 fixation. Nature Catalysis, 6(12), 1228-1240.

Related Links
Max Planck Institute for Terrestrial Microbiology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
UK says to launch carbon levy on imports from 2027
London (AFP) Dec 18, 2023
Britain on Monday said it planned to introduce a levy on carbon-intensive imported goods such as cement and iron from 2027. "This levy will make sure carbon intensive products from overseas - like steel and ceramics - face a comparable carbon price to those produced in the UK," finance minister Jeremy Hunt said in a statement. Hunt added that this would enable Britain's "decarbonisation efforts (to) translate into reductions in global emissions". The Treasury will next year consult on the ... read more

CARBON WORLDS
Nigerians look to biofuel as cost of cooking gas soars

Chinese company gives leftover hotpot oil second life as jet fuel

Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

CARBON WORLDS
Dynamic Point-Pixel Feature Alignment Network: A Leap Forward in 3D Object Detection Technology

Artificial muscle device produces force 34 times its weight

New soft robots roll like tires, spin like tops and orbit like moons

US bans pharmacy Rite Aid from facial recognition use

CARBON WORLDS
Danish firm to build huge wind farm off UK

UK unveils massive news windfarm investment by UAE, German firms

Wind and solar projects can profit from bitcoin mining

Winds of change? Bid to revive England's onshore sector

CARBON WORLDS
Hertz to shrink EV rental fleet over sluggish US demand

Uber, Kia sign electric vehicle partnership

Honda unveils futuristic EV designs to hit US market in 2026

China's Evergrande says head of EV arm detained

CARBON WORLDS
How does corrosion happen? New research examines process on atomic level

Solid state battery design charges in minutes, lasts for thousands of cycles

The first battery prototype using hemoglobin is developed

Sudden death of quantum fluctuations defies current theories of superconductivity

CARBON WORLDS
UK unveils plans for 'biggest nuclear power expansion in 70 years'

Three-metre tsunami recorded at Japan nuclear plant after quake

EDF to invest 1.3 bn in UK nuclear power stations

UK announces Europe's first high-tech uranium fuel plant

CARBON WORLDS
US reduces emissions in 2023 - but not fast enough: report

Private sector funding key to climate transition, World Bank chief says

China, climate in focus at Japan-ASEAN summit

'Where is the money?' COP28 deal throws spotlight on funding

CARBON WORLDS
Soil fungi may help explain the global gradient in forest diversity

Deforestation in Brazilian Amazon halved in 2023

A new map showing all above-ground biomass in the Brazilian Amazon

Drones help solve forest carbon capture riddle

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.