Solar Energy News  
TIME AND SPACE
Measuring forces with oscillations
by Staff Writers
Zurich, Switzerland (SPX) Oct 10, 2016


Ramasubramanian Chitra, Anina Leuch, Oded Zilberberg, Luca Papariello and Alexander Eichler (from left) in front of their experiment with a guitar string. Image courtesy ETH Zurich and Alexander Eichler.

A child swings on a swing, gaining momentum with its legs. For physicists, this is a reasonably easy movement. They call it parametric oscillation. Things are getting more complicated if - in addition to the child's efforts - the mother (or the father) is around to push the swing. The interaction between the pushing force and the parametric oscillation can become very intricate, making it hard to calculate how much force the parent expends from the resulting irregular swinging motion.

An interdisciplinary team of theoretical and experimental physicists at ETH Zurich has now succeeded in this very calculation. The researchers have been able to describe for the first time how parametric oscillation (the child's own drive) can be used to measure an external force (the parent's push). Their discovery has applications for sensors, and the scientists have submitted a patent application for the underlying principle.

Advantages for small sensors
"Many of today's sensors are already based on oscillations," says Oded Zilberberg, a professor at the Institute for Theoretical Physics. "With small resonators you can measure, for example, force, pressure, mass, sound or temperature. Atomic force microscopes are also built on this principle." But these applications - often found in the field of microtechnology - currently use less intricate oscillations known as harmonic oscillations.

For these measurements to use intricate oscillations, as Zilberberg and his colleagues propose, a paradigm shift is necessary: sensors would have to be designed differently. The new principle brings particular advantages for very small sensors, says the physicist. It would make it possible to build extremely small yet precise sensors, as the measuring signal in the new principle stands out better against background noise than with current methods.

Experiments with atoms and guitar strings
The scientists discovered the new principle while analysing parametric oscillations in a quantum physics experiment with laser-trapped rubidium atoms. Having understood the fundamental interaction between parametric and pushed oscillations, the researchers then directly demonstrated the effect using a parametrically oscillating guitar string.

The scientists exerted a pulsating force on the string while continuously varying the frequency of the pulse. The researchers observed that the strength of the vibration of the string (amplitude) did not change fully continuous, but there was rather a sharp jump in amplitude at a particular frequency. As they discovered, this 'jump frequency' depends directly on the strength of the applied force and can therefore be used as a force meter.

Zilberberg and his colleagues are now looking for industrial partners to help develop high-resolution sensors. The new principle could even be applied in computer technology. Zilberberg: "In the very early stages of the computer age there were computer memories that were based on oscillators, known as parametrons. The computer industry later lost interest in them, but our discovery could breathe new life into this field of research."

Research paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Scientists solve mystery of the lone wolf wave
Buffalo, N.Y. (UPI) Oct 4, 2016
Solitary waves or solitons, sometimes called lone wolf waves, are just what they sound like. Unlike normal waves, these nonlinear waves persist without dissipating - maintaining their shape, speed and energy even after colliding with other waves. A new mathematical solution, developed by scientists at the University of Buffalo, predicts the phenomenon more accurately than ever before. ... read more


TIME AND SPACE
Organic semiconducting polymers can harvest sunlight to split CO2 into fuels

New findings by Stanford chemists could lead to greener methanol production

Liquid Manure Volume Reduced by Half

Can jet fuel be grown on trees?

TIME AND SPACE
Your next nurse could be a robot

First demonstration of brain-inspired device to power artificial systems

QinetiQ, Milrem debut Titan unmanned ground vehicle

Raytheon developing interface for DARPA's ground vehicle program

TIME AND SPACE
Wind turbines a risk to birds living as far as 100 miles away

SeaRoc launches SeaHub for communication and logistic data

U.S. governors want more offshore wind support

GM commits to 100 percent renewables

TIME AND SPACE
Scotland greens up public transportation

Germany conducting inquiry into Tesla autopilot system

Fisker relaunches electric car effort

GM, U.S. Army unveil Colorado ZH2 tactical hydrogen vehicle

TIME AND SPACE
Enhancing the superconducting properties of an iron-based material

New cost-effective silicon carbide high voltage switch created

Wireless 'data center on a chip' aims to cut energy use

Advancing lithium-air batteries with development of novel catalyst

TIME AND SPACE
Japan nuclear reactor shuttered for safety work

South Africa's nuclear programme kicked into touch, again

Deal signed for giant UK nuclear project

UN trims nuclear power growth forecasts

TIME AND SPACE
Strong at the coast, weak in the cities - the German energy-transition patchwork

Europe ups energy security ante

NREL releases updated baseline of cost and performance data for electricity generation technologies

Chinese giant to buy Pakistani power company for $1.6 bn

TIME AND SPACE
'Goldilocks fires' can enhance biodiversity in Western forests

Urban warming slows tree growth, photosynthesis

Emissions from logging debris in Africa may be vastly under estimated

Farming with forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.