Solar Energy News  
TIME AND SPACE
Measuring time without a clock
by Staff Writers
Lausanne, Switzerland (SPX) Feb 10, 2017


Mauro Fanciulli and Hugo Dil.

EPFL scientists have been able to measure the ultrashort time delay in electron photoemission without using a clock. The discovery has important implications for fundamental research and cutting-edge technology. When light shines on certain materials, it causes them to emit electrons. This is called "photoemission" and it was discovered by Albert Einstein in 1905, winning him the Nobel Prize.

But only in the last few years, with advancements in laser technology, have scientists been able to approach the incredibly short timescales of photoemission. Researchers at EPFL have now determined a delay of one billionth of one billionth of a second in photoemission by measuring the spin of photoemitted electrons without the need of ultrashort laser pulses. The discovery is published in Physical Review Letters.

Photoemission
Photoemission has proven to be an important phenomenon, forming a platform for cutting-edge spectroscopy techniques that allow scientists to study the properties of electrons in a solid. One such property is spin, an intrinsic quantum property of particles that makes them look like as if they were rotating around their axis. The degree to which this axis is aligned towards a particular direction is referred to as spin polarization, which is what gives some materials, like iron, magnetic properties.

Although there has been great progress in using photoemission and spin polarization of photo-emitted electrons, the time scale in which this entire process takes places have not been explored in great detail.

The common assumption is that, once light reaches the material, electrons are instantaneously excited and emitted. But more recent studies using advanced laser technology have challenged this, showing that there is actually a time delay on the scale of attoseconds.

Time without a clock
The lab of Hugo Dil at EPFL, with colleagues in Germany, showed that during photoemission, the spin polarization of emitted electrons can be related to the attosecond time delays of photoemission. More importantly, they have shown this without the need for any experimental time resolution or measurement - essentially, without the need for a clock. To do this, the scientists used a type of photoemission spectroscopy (SARPES) to measure the spin of electrons photo-emitted from a crystal of copper.

"With lasers you can directly measure the time delay between different processes, but it is difficult to determine when a process starts - time zero," says Mauro Fanciulli, a PhD student of Dil's group and first author on the paper. "But in our experiment we measure time indirectly, so we don't have that problem - we could access one of the shortest timescales ever measured. The two techniques [spin and lasers], are complementary, and together they can yield a whole new realm of information."

The information about the timescale of photoemission is included in the wavefunction of the emitted electrons. This is a quantum description of the probability of where any given electron can be found at any given time. By using SAPRES, the scientists were able to measure the spin of the electrons, which in turn allowed them to access their wavefunction properties.

"The work is a proof of principle that can trigger further fundamental and applied research," says Hugo Dil. "It deals with the fundamental nature of time itself and will help understand the details of the photoemission process, but it can also be used in photoemission spectroscopy on materials of interest." Some of these materials include graphene and high-temperature superconductors, which Dil and his colleagues will be studying next.

Mauro Fanciulli, Henrieta Volfova, Stefan Muff, Jurgen Braun, Hubert Ebert, Jan Minar, Ulrich Heinzmann, J. Hugo Dil. Spin polarization and attosecond time delay in photoemission from spin degenerate states of solids. Physical Review Letters 08 February 2017. DOI: 10.1103/PhysRevLett.118.067402


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ecole Polytechnique Federale de Lausanne
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
JILA atomic clock mimics long-sought synthetic magnetic state
Boulder CO (SPX) Dec 29, 2016
Using their advanced atomic clock to mimic other desirable quantum systems, JILA physicists have caused atoms in a gas to behave as if they possess unusual magnetic properties long sought in harder-to-study solid materials. Representing a novel "off-label" use for atomic clocks, the research could lead to the creation of new materials for applications such as "spintronic" devices and quantum com ... read more


TIME AND SPACE
A better way to farm algae

DuPont Industrial Biosciences to develop new high-efficiency biogas enzyme method

Cathay Pacific to cut emissions with switch to biofuel

Populus dataset holds promise for biofuels, materials, metabolites

TIME AND SPACE
NASA Selects Top 20 Space Robotics Challenge Teams

500 years of robots go on show in London

Pentagon's robot satellite repair system sued by aerospace company

Switzerland orders Protector remote weapon stations

TIME AND SPACE
British grid drawing power from new offshore wind farm

Prysmian UK to supply land cable connections for East Anglia ONE offshore wind farm

Russia's nuclear giant pushes into wind energy

The power of wind energy and how to use it

TIME AND SPACE
China jails ex-chairman of auto giant FAW for bribery

Volvo Cars posts strong earnings on record sales

Germany, France plan cross-border self-driving test zone

'Dieselgate' fallout leads to score-settling at Volkswagen

TIME AND SPACE
Portable superconductivity systems for small motors

How to recycle lithium batteries

New, long-lasting flow battery could run for more than a decade with minimum upkeep

Building a better microbial fuel cell - using paper

TIME AND SPACE
Explosion at French nuclear plant, 'no radiation risk'

Iran imports 149 tonnes of uranium from Russia: atomic chief

Three new uranium minerals from Utah

France's Areva picks up Japanese investors

TIME AND SPACE
Electricity costs: A new way they'll surge in a warming world

Republican ex-top diplomats propose a carbon tax

Climate change may overload US electrical grid: study

Action is needed to make stagnant CO2 emissions fall

TIME AND SPACE
Why nature restoration takes time

Wetlands play vital role in carbon storage, study finds

Amazon forest was transformed by ancient people: study

Honduras manages to stall pine-munching bugs' march









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.