Solar Energy News  
MARSDAILY
Meet the Martian meteorite hunters
by Staff Writers
London UK (SPX) Jul 23, 2021

Sara Motaghian photographing the Martian meteorite Tissint (BM.2012, M1 Natural History Museum Collection) and lab set up with the Aberystwyth University PanCam Emulator (AUP3), the Hyperspectral camera Counterpart, and VNIR contact spectrometer. Natasha Almeida / Natural History Museum.

A team at the Natural History Museum (NHM), London is paving the way for future rovers to search for meteorites on Mars. The scientists are using the NHM's extensive meteorite collection to test the spectral instruments destined for the ExoMars rover Rosalind Franklin, and develop tools to identify meteorites on the surface of the red planet. The project is being presented today (23 July) at the virtual National Astronomy Meeting 2021.

The cratered surface of our nearest planetary neighbour has a long and complex history, and searching for rocks amidst more rocks may seem like a futile activity. Despite this, Martian rovers statistically have a significantly higher 'find per mile' success rate than dedicated meteorite hunts on Earth: for every kilometre travelled by a Mars rover, approximately one meteorite is found, even though the rovers have not been specifically looking for them up till now.

However, as part of the European Space Agency's upcoming ExoMars mission, the next rover - named Rosalind Franklin, after the chemist best known for her pioneering work on DNA - will drill down into the Martian surface to sample the soil, analyse its composition and search for evidence of past or present life buried underground.

Meteorites are important pieces of evidence that can help us understand this story; once a meteorite lands on a planet, it is subjected to the same atmospheric conditions as the rest of the surface. Chemical and physical weathering can provide information on climate weathering rates and water-rock interactions, meteorite sizes and distribution can help to infer information about the density of the atmosphere, and stony meteorites could be a potential delivery mechanism for organic materials to Mars.

"Meteorites act as a witness plate across geological time," said Sara Motaghian, the PhD student at the NHM and Imperial College London who is carrying out the work. "Generally, the surfaces of Mars we are exploring are incredibly ancient, meaning there have been billions of years for the surface to accumulate these meteorites and lock in information from across Mars' past."

The team are looking in particular at the use of multispectral imaging with the PanCam instrument, hoping to be able to highlight features in images that could be associated with meteorites as the rover moves across the surface. They are also investigating the possibility of using pattern recognition techniques to distinguish features such as Widmanstatten patterns, which can be revealed by extreme weathering.

The launch of the ExoMars rover was originally scheduled for 2020, however was delayed until 2022 due to technical issues and growing concerns over the coronavirus pandemic. Once the rover reaches Mars in 2023, the team hope that their work will allow meteorites on the surface to be studied for longer by the Rosalind Franklin rover before it drives on, helping to build a more complete understanding of the Martian surface and its history, if any, of life.


Related Links
Natural History Museum
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Martian meteorites contain 4-billion-year-old nitrogen-bearing organic material
Tokyo, Japan (SPX) Apr 30, 2020
A research team including research scientist Atsuko Kobayashi from the Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology, Japan and research scientist Mizuho Koike from the Institute of Space and Astronautical Science at Japan Aerospace Exploration Agency, have found nitrogen-bearing organic material in carbonate minerals in a Martian meteorite. This organic material has most likely been preserved for 4 billion years since Mars' Noachian age. Because carbonate minerals typically ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Catalyzing the conversion of biomass to biofuel

Airbus joins SAF+ Consortium to for sustainable aviation fuels

Cleaner air has boosted US corn and soybean yields

Unlocking the power of the microbiome

MARSDAILY
Wearable brain-machine interface turns intentions into actions

Google parent launches new 'moonshot' for robotics software

MDA awarded next contract for flagship Canadarm3 Program

Smart cards and robots: Saudi Arabia's 'digital hajj'

MARSDAILY
For golden eagles, habitat loss is main threat from wind farms

Wind turbines can be clustered while avoiding turbulent wakes of their neighbors

Shell, France's EDF to build US offshore windfarm

Wind and the sun power Greek islands' green energy switch

MARSDAILY
Tesla quarterly profits top $1 bn for 1st time

Going electric: Carmakers make the switch

Sales of electric cars charge ahead in Europe

Uber buys trucking software firm for $2.25 bn

MARSDAILY
Department of Energy announces $9.35 million for research on high energy density plasmas

Europe to boost battery production as electric shift accelerates

Gaming graphics card allows faster, more precise control of fusion energy experiments

Tesla mints nickel deal with Aussie mining giant

MARSDAILY
France would have shut reactor after Taishan-style fault: EDF

UK could bar China firm from nuclear projects: report

Investigating materials for safe, secure nuclear power

Framatome achieves milestone in development of advanced fuel technology

MARSDAILY
Blasted by flames, California to modernize its power grid

Powering Iraqi homes one switch at a time

Israel announces plan to slash carbon emissions by 2050

G20 ministers sign deal but stuck on global warming caps

MARSDAILY
Index ranks vulnerability of rainforests to climate and human impacts

NASA study finds tropical forests' ability to absorb carbon dioxide is waning

UNESCO removes DR Congo park from endangered list

20% of intact tropical forests overlap with extractive industries









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.