Solar Energy News  
TIME AND SPACE
'Meta-mirror' reflects sound waves in any direction
by Staff Writers
Durham NC (SPX) Mar 11, 2019

The 'meta-mirror' was carefully engineered to make a sound wave coming straight at it reflect at a different angle with zero scattering losses.

Researchers at Duke University and Aalto University (Finland) have constructed a "meta-mirror" device capable of perfectly reflecting sound waves in any direction. The proof-of-principle demonstration is analogous to looking directly into a mirror and only seeing the person next to you instead of your own face.

The research appeared online on February 15 in the journal Science Advances.

"When you look into an everyday mirror, the light follows the Law of Reflection: the light must bounce off of it at the same angle that it came in at," said Junfei Li, a doctoral student in electrical and computer engineering at Duke University. The same rules generally apply to sound, but "we wanted to see if we could instead send a wave off in a different direction."

To break the law of reflection with sound waves, the researchers had to engineer a device that could precisely control amplitude (loudness) and speed throughout the entire wave, which is even more difficult than it sounds.

"One way we could achieve this is by magically launching a precisely controlled sound wave that 'strikes' the incoming sound wave like balls on a pool table," said Li. "But trying to do that would cause so much trouble that it's not a practical idea."

Instead of resorting to magic, Li and his colleagues turned to metamaterials - artificial materials that manipulate waves like light and sound through their structure rather than their chemistry. For example, while the particular metamaterial that the researchers designed is made out of plastic, it's not the properties of the plastic that are important; it's the shapes of the device's features that allow it to steer sound waves in any direction.

The surface of the metamaterial looks much like a wave itself, etched with a series of channels of various depths. Those depths are engineered to precisely control the speed at which the sound wave reflects off various points of the meta-mirror. Their wave-like positioning controls the sound wave's amplitude.

"Because a soundwave carries energy, you have to give it a kick to redirect it," said Steve Cummer, professor of electrical and computer engineering at Duke. "But to do this perfectly, you either have to actively redistribute the energy along the surface of the meta-mirror, which isn't feasible, or you have to cleverly choose a shape where the energy distribution ends up being the same everywhere."

As a sound wave hits the meta-mirror, it reflects off of its curved surfaces and interferes with itself. Between the meta-mirror's shape and the depth of its channels, this interference pattern results in the sound wave reflecting in a desired direction without any of its energy being absorbed or scattered in an unwanted direction.

In the proof-of-concept demonstration, the metamaterial device takes a soundwave traveling directly toward it at 3,000 Hertz, a very high pitch not dissimilar to getting a "ringing in your ears," and perfectly reflects it at an angle of 70 degrees.

While the prototype device is specifically tailored to one frequency and angle of reflection, the researchers plan to pursue a dynamic device that could change shape to reflect different frequencies in different directions. They also plan to work on similar devices for underwater acoustics applications.

A similar device could also be created to control light waves, though its features would have to be engineered on a much smaller scale, because light wavelengths are shorter. Such a device would not only be able to reflect light in different directions, however, it could also split a single wave into two arbitrary directions.

"Not only did we figure out a way to design highly efficient metasurfaces, we can also adapt the design for different functionalities," said Ana Diaz-Rubio, a postdoctoral researcher at Aalto University who led the work on the project's underlying theory. "These metasurfaces are a versatile platform for arbitrary control of reflection."

Research Report: "Power flow-conformal metamirrors for engineering wave reflections."


Related Links
Duke University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
New report on industrial physics and its role in the US economy
Washington DC (SPX) Mar 11, 2019
Industrial physics plays a significant role in driving the U.S. economy, according to a new report by the American Physical Society, which will be described this week at the 2019 APS March Meeting in Boston. The report, "The Impact of Industrial Physics on the U.S. Economy," found that industrial physics contributed an estimated $2.3 trillion in 2016, which was 12.6 percent of the gross domestic product (GDP). A press conference on the report will take place during the APS meeting. Informati ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Making xylitol and cellulose nanofibers from paper paste

Bright skies for plant-based jet fuels

Malaysia plants hope for palm oil's future in dwarf trees

Converting biomass by applying mechanical force

TIME AND SPACE
Robots help bees and fish communicate

Seeing through a robot's eyes helps those with profound motor impairments

Robot made of many simple particles has no centralized control or single failure point

New cell-sized micro robots might make incredible journeys

TIME AND SPACE
SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

DNV GL to deliver 5-minute energy forecast pilot for Australia's Ararat Wind Farm

E.ON announces start of construction on South Texas windfarm

Improved hybrid models for multi-step wind speed forecasting

TIME AND SPACE
New wheel units could bring vehicle costs down

Lyft revs up for an IPO seeking to raise $2.4bn

Fisker relaunches Tesla rivalry with $40k electric car

German lawmakers raise hurdle for diesel bans

TIME AND SPACE
Speeding the development of fusion power to create unlimited energy on Earth

Advances point the way to smaller, safer batteries

Fusion science and astronomy collaboration enables investigation of the origin of heavy elements

Testing space batteries to destruction for cleaner skies

TIME AND SPACE
China to start construction of its 1st floating nuclear power plant

EQUALLE group signs MoU to cooperate on qualification processes

RWE looks to 2019 to complete transformation

Team solves a beta-decay puzzle with advanced nuclear models

TIME AND SPACE
Forget about coal - broadband is the best bet for rural America

CO2 emissions in developed economies fall due to decreasing fossil fuel and energy use

S.Africa imposes severe power cuts ahead of election

To conserve energy, AI clears up cloudy forecasts

TIME AND SPACE
Floodplain forests under threat

USAID and NASA harness science, technology for Amazon sustainability

Billions pledged to halt Africa's forest loss

Largest carbon dioxide sink in renewable forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.