. Solar Energy News .




.
TECH SPACE
Metadynamics technique offers insight into mineral growth and dissolution
by Staff Writers
Oak Ridge, TN (SPX) Jan 24, 2012

ORNL geochemist Andrew Stack used metadynamics to examine complex reaction mechanisms during mineral growth and dissolution. See animation.

By using a novel technique to better understand mineral growth and dissolution, researchers at the Department of Energy's Oak Ridge National Laboratory are improving predictions of mineral reactions and laying the groundwork for applications ranging from keeping oil pipes clear to sequestering radium.

The mineral barite was examined to understand mineral growth and dissolution generally, but also because it is the dominant scale-forming mineral that precipitates in oil pipelines and reservoirs in the North Sea. Oil companies use a variety of compounds to inhibit scale formation, but a better understanding of how barite grows could enable them to be designed more efficiently.

Additionally, barium can trap radium in its crystal structure, so it has the potential to contain the radioactive material.

In a paper featured on this month's cover of the Journal of the American Chemical Society, the ORNL-led team studied barite growth and dissolution using metadynamics, a critical technique that allows researchers to study much slower reactions than what is normally possible.

"When a mineral is growing or dissolving, you have a hard time sorting out which are the important reactions and how they occur because there are many things that could be happening on the surface," said Andrew Stack, ORNL geochemist and lead author on the paper.

"We can't determine which of many possible reactions are controlling the rate of growth."

To overcome this hurdle, ORNL Chemical Sciences Division's Stack started with molecular dynamics, which can simulate energies and structures at the atomic level. To model a mineral surface accurately, the researchers need to simulate thousands of atoms.

To directly measure a slow reaction with this many atoms during mineral growth or dissolution might take years of supercomputer time. Metadynamics, which builds on molecular dynamics, is a technique to "push" reactions forward so researchers can observe them and measure how fast they are proceeding in a relatively short amount of computer time.

With the help of metadynamics, the team determined that there are multiple intermediate reactions that take place when a barium ion attaches or detaches at the mineral surface, which contradicts the previous assumption that attachment and detachment occurred all in a single reaction.

"Without metadynamics, we would never have been able to see these intermediates nor determine which ones are limiting the overall reaction rate," Stack said.

To run computer simulations of mineral growth, researchers used the Large-scale Atomic/Molecular Massively Parallel Simulator, a molecular dynamics code developed by Sandia National Laboratories.

Co-authors on the paper are the Curtin University (Australia) Nanochemistry Research Institute's Paolo Raiteri and Julian Gale.

Related Links
Oak Ridge National Laboratory
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Researchers Uncover Transparency Limits on Transparent Conducting Oxides
Santa Barbara, CA (SPX) Jan 23, 2012
Researchers in the Computational Materials Group at the University of California, Santa Barbara (UCSB) have uncovered the fundamental limits on optical transparency in the class of materials known as transparent conducting oxides. Their discovery will support development of energy efficiency improvements for devices that depend on optoelectronic technology, such as light- emitting diodes a ... read more


TECH SPACE
Obey optimises bioenergy yield

Bio architecture lab technology converts seaweed to renewable fuels and chemicals

Findings prove Miscanthus x giganteus has great potential as an alternative energy source

US Woody Biomass Prices Have Dropped the Past Three Years

TECH SPACE
A new Artificial Intelligence technique to speed the planning of tasks when resources are limited

Open-source robotic surgery platform going to top medical research labs

Leaping lizards and dinosaurs inspire robot design

Greying Singapore taps robots, games in rehab

TECH SPACE
Natural Power appointed as Owner's Engineer on 20.5MW Sixpenny Wood wind farm

China voices 'deep concern' over US wind tower probe

Power generation is blowing in the wind

Spain's Gamesa wins Chinese wind turbine contract

TECH SPACE
Fold-up car of the future unveiled at EU

Toyota Australia to axe 350 jobs

Gamesa buys stake in EV software firm

GM reclaims world's biggest carmaker title as Toyota skids

TECH SPACE
Iran says EU oil embargo will fail

Polish Lotos to search for shale gas in Lithuania

Aquatic power generator takes to the sea

Ukraine: Gazprom not asking for assets

TECH SPACE
New form of graphene could prevent electronics from overheating and revolutionize thermal management

VW nears number one ranking with 8 mn sales

Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

TECH SPACE
GE Energy Launches New Power Conversion Business

Converteam Acquisition Launches GE into the $30 Billion Power Conversion Market

TEPCO to hold bids for 17 million smart meters: report

Use and Capacity of Global Hydropower Increases

TECH SPACE
Team finds natural reasons behind nitrogen-rich forests

Amazon Basin shifting to carbon emitter: study

Indonesia pledges to conserve half of Borneo region

New study evaluates impact of land use activity in the Amazon basin


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement