Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
'Metamaterials,' quantum dots show promise for new technologies
by Staff Writers
West Lafayette IN (SPX) May 28, 2012


This graphic depicts a new "nanostructured metamaterial" - layers of silver and titanium oxide and tiny components called quantum dots - to dramatically change the properties of light. Researchers are working to perfect the metamaterials, which might be capable of ultra-efficient transmission of light, with potential applications including advanced solar cells and quantum computing. Findings and this image appeared in the journal Science in April. (Image courtesy of CUNY)

Researchers are edging toward the creation of new optical technologies using "nanostructured metamaterials" capable of ultra-efficient transmission of light, with potential applications including advanced solar cells and quantum computing.

The metamaterial - layers of silver and titanium oxide and tiny components called quantum dots - dramatically changes the properties of light. The light becomes "hyperbolic," which increases the output of light from the quantum dots.

Such materials could find applications in solar cells, light emitting diodes and quantum information processing far more powerful than today's computers.

"Altering the topology of the surface by using metamaterials provides a fundamentally new route to manipulating light," said Evgenii Narimanov, a Purdue University associate professor of electrical and computer engineering.

Findings were detailed in a research paper published in the journal Science.

Such metamaterials could make it possible to use single photons - the tiny particles that make up light - for switching and routing in future computers. While using photons would dramatically speed up computers and telecommunications, conventional photonic devices cannot be miniaturized because the wavelength of light is too large to fit in tiny components needed for integrated circuits.

"For example, the wavelength used for telecommunications is 1.55 microns, which is about 1,000 times too large for today's microelectronics," Narimanov said.

Nanostructured metamaterials, however, could make it possible to reduce the size of photons and the wavelength of light, allowing the creation of new types of nanophotonic devices, he said.

The work was a collaboration of researchers from Queens and City Colleges of City University of New York (CUNY), Purdue University, and University of Alberta. The experimental study was led by the CUNY team, while the theoretical work was carried out at Purdue and Alberta.

The Science paper is authored by CUNY researchers Harish N.S. Krishnamoorthy, Vinod M. Menon and Ilona Kretzschmar; University of Alberta researcher Zubin Jacob; and Narimanov. Zubin is a former Purdue doctoral student who worked with Narimanov.

The approach could help researchers develop "quantum information systems" far more powerful than today's computers. Such quantum computers would take advantage of a phenomenon described by quantum theory called "entanglement." Instead of only the states of one and zero, there are many possible "entangled quantum states" in between.

.


Related Links
Purdue University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Thousands of invisibility cloaks trap a rainbow
Washington DC (SPX) May 28, 2012
Many people anticipating the creation of an invisibility cloak might be surprised to learn that a group of American researchers has created 25 000 individual cloaks. But before you rush to buy one from your local shop, the cloaks are just 30 micrometres in diameter and are laid out together on a 25 millimetre gold sheet. This array of invisibility cloaks is the first of its kind and has be ... read more


TECH SPACE
Nuisance seaweed found to produce compounds with biomedical potential

Maps of Miscanthus genome offer insight into grass evolution

Relative reference: Foxtail millet offers clues for assembling the switchgrass genome

Lawrence Livermore work may improve the efficiency of the biofuel production cycle

TECH SPACE
Graphene-control cutting using an atomic force microscope-based nanorobot

Rescue robot tested at So. Calif. beach

DLR presents innovations in robotics at AUTOMATICA 2012

Navy pilot training enhanced by AEMASE 'smart machine' developed at Sandia Labs

TECH SPACE
Obama pushes for wind power tax credit

US DoI Approves Ocotillo Express Wind Project

Opening Day Draws Close for Janneby Wind Testing Site

NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

TECH SPACE
Japan's April auto output soars in year after quake

Ferrari recalls 56 cars in China: state media

Toyota overtakes GM, regains number one spot

Calif. passes 'self-driving' cars bill

TECH SPACE
Clean Republic Selects AllCell to Supply Lithium-ion eBike Battery with 40 Mile Range

Oil bonanza eludes Cuba after fresh tests

Turkey warns of faceoff over east Medgas

Gas fracking boom in Michigan goes bust

TECH SPACE
Iran to launch new nuclear plant project: state TV

Slovenian nuclear plant resumes production after 42 days

Pro-nuclear mentality to blame for Fukushima: ex-PM

Japan power firm urges PM to OK nuclear plant restart

TECH SPACE
SEIA Statement on Chinese Ruling Against US Renewable Energy Programs

Critics pan Britain's draft energy bill

Goldman to plow $40 bn into green energy

Japan urges lower energy use amid shortage fears

TECH SPACE
Beetle-infested Pine Trees Contribute to Air Pollution and Haze in Forests

Beetle-infested pine trees contribute more to air pollution and haze in forests

Forest diversity from Canada to the sub-tropics influenced by family proximity

Brazil leader vetoes parts of law opening up Amazon




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement