Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Metamolecules that switch handedness at light-speed
by Staff Writers
Berkeley CA (SPX) Jul 11, 2012


The schematic shows the chirality switching metamolecule consists of four chiral resonators with fourfold rotational symmetry. An external beam of light instantly reverses the metamolecule's chirality from right-handed to left-handed. Credit: Courtesy of Xiang Zhang, et. al.

A multi-institutional team of researchers that included scientists with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has created the first artificial molecules whose chirality can be rapidly switched from a right-handed to a left-handed orientation with a beam of light. This holds potentially huge possibilities for the application of terahertz technologies across a wide range of fields, including biomedical research, homeland security and ultrahigh-speed communications.

Chirality is the distinct left/right orientation or "handedness" of some types of molecules, meaning the molecule can take one of two mirror image forms. The right-handed and left-handed forms of such molecules, called "enantiomers," can exhibit strikingly different properties.

For example, one enantiomer of the chiral molecule limonene smells of lemon, the other smells of orange. The ability to observe or even switch the chirality of molecules using terahertz (trillion-cycles-per-second) electromagnetic radiation is a much coveted asset in the world of high technology.

"Natural materials can be induced to change their chirality but the process, which involves structural changes to the material, is weak and slow. With our artificial molecules, we've demonstrated strong dynamic chirality switching at light-speed," says Xiang Zhang, one of the leaders of this research and a principal investigator with Berkeley Lab's Materials Sciences Division.

Working with terahertz (THz) metamaterials engineered from nanometer-sized gold strips with air as the dielectric - Zhang and his colleagues fashioned a delicate artificial chiral molecule which they then incorporated with a photoactive silicon medium.

Through photoexcitation of their metamolecules with an external beam of light, the researchers observed handedness flipping in the form of circularly polarized emitted THz light. Furthermore, the photoexcitation enabled this chirality flipping and the circular polarization of THz light to be dynamically controlled.

"In contrast to previous demonstrations where chirality was merely switched on or off in metamaterials using photoelectric stimulation, we used an optical switch to actually reverse the chirality of our THz metamolecules," Zhang says.

Science and Engineering Center, is one of three corresponding authors of a paper describing this work in Nature Communications. The paper is titled "Photoinduced handedness switching in terahertz chiral metamolecules." The other corresponding authors are Shuang Zhang of the University of Birmingham in the United Kingdom, and Antoinette Taylor of DOE's Los Alamos National Laboratory.

The optically switchable chiral THz metamolecules consisted of a pair of 3D meta-atoms of opposite chirality made from precisely structured gold strips. Each meta-atom serves as a resonator with a coupling between electric and magnetic responses that produces strong chirality and large circular dichroism at the resonance frequency.

"When two chiral meta-atoms of the same shape but opposite chirality are assembled to form a metamolecule, the mirror symmetry is preserved, resulting in the vanishing of optical activity," Zhang says. "From a different point of view, the optical activity arising from these two meta-atoms of opposite chirality cancels out each other."

Silicon pads were introduced to each chiral meta-atom in the metamolecule but at different locations. In one meta-atom, the silicon pad bridged two gold strips, and in the other meta-atom, the silicon pad replaced part of a gold strip. The silicon pads broke the mirror symmetry and induced chirality for the combined metamolecule. The pads also functioned as the optoelectronic switches that flipped the chirality of the metamolecule under photoexcitation.

Says corresponding author Shuang Zhang, "Our scheme relies on the combination of two meta-atoms with opposite properties, in which one is functional while the other is inactive within the frequency range of interest. With suitable design, the two meta-atoms respond oppositely to an external stimulus, that is, the inactive one becomes functional and vice versa."

THz electromagnetic radiation - also known as T-rays - falls within the frequency range of molecular vibrations, making it an ideal none-invasive tool for analyzing the chemical constituents of organic and non-organic materials. Being able to flip the handedness of chiral metamolecules and control the circular polarization of THz light could be used to detect toxic and explosive chemicals, or for wireless communication and high-speed data processing systems.

As most biological molecules are chiral, including DNA, RNA and proteins, THz-based polarimetric devices should also benefit medical researchers and developers of pharmaceutical drugs among others.

"The observed giant switchable chirality we can engineer into our metamaterials provides a viable approach towards creating high performance polarimetric devices that are largely not available at terahertz frequencies," says corresponding author Antoinette Taylor.

"This frequency range is particularly interesting because it uniquely reveals information about physical phenomena such as the interactions between or within biologically relevant molecules, and may enable control of electronic states in novel material systems, such as cyclotron resonances in graphene and topological insulators."

Taylor and her co-authors say that the general design principle of their optically switchable chiral THz metamolecules is not limited to handedness switching but could also be applied to the dynamic reversing of other electromagnetic properties.

In addition to the corresponding authors, other authors of the Nature Communications paper were Jiangfeng Zhou, Yong-Shik Park, Junsuk Rho, Ranjan Singh, Sunghyun Nam, Abul Azad, Hou-Tong Chen and Xiaobo Yin.

.


Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Physicists find chink in the Batsuit
Paris (AFP) July 9, 2012
Batman would need a parachute to land safely in real life, say physicists who recommend a cape redesign if the masked superhero is to pursue his exploits outside the pages of comic books or celluloid. On the big screen, the crime-fighter is able to glide from tall buildings using a cape spread out like wings - similar to the method used by base jumpers who leap from bridges, buildings and c ... read more


TECH SPACE
New biofuel process dramatically improves energy recovery

Denmark can triple its biomass production and improve the environment

Researchers tap into genetic reservoir of heat-loving bacteria

Prairie cordgrass: Highly underrated

TECH SPACE
Researchers Develop an Artificial Cerebellum than Enables Robotic Human-like Object Handling

NASA Workshop Discusses How On-Orbit Robotic Satellite-Servicing Becomes Reality

Biomechanical legs are a giant step for robot-kind

Most accurate robotic legs mimic human walking gait

TECH SPACE
GL Garrad Hassan releases update of WindFarmer 5.0

U.S moves massive wind farm plan forward

Belgium wind farm a go after EIB loan

Opponents force Wales wind farm hearings

TECH SPACE
EU push for car CO2 cuts faces industry, green criticism

China auto sales up 9.9% in June: industry group

1950s flying car for sale

Big German cars favoured in new EU car emission rules

TECH SPACE
ASEAN sharply split on South China Sea row

Waste to Watts: Improving Microbial Fuel Cells

Japan, China in fresh territorial row

Israel drills for oil near West Bank

TECH SPACE
S. Korea prosecutors charge 32 over nuclear graft

Swiss nuclear safety watchdog gives stations the all-clear

Canada nuclear scientists strike

Japan reactor back to full power after nuke shutdown

TECH SPACE
EU ministers launch project bonding effort

Extreme weather conditions cost EU's transport system at least 15 billion euro annually

Europe grid upgrades pegged at $128B

Clean cookstoves unaffordable to Bangladeshi women

TECH SPACE
Rising CO2 in atmosphere also speeds carbon loss from forest soils

Taiwan indicts loggers for axing 2000-year-old trees

Study Slashes Deforestation Carbon Emission Estimate

Scientists develop first satellite deforestation tracker for whole of Latin America




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement