Solar Energy News  
SOLAR SCIENCE
Micro-scale current sheets unleash macro-scale space weather
by Staff Writers
Pittsburgh PA (SPX) Nov 09, 2021

The Earth's magnetosphere can undergo global compression due to solar wind. This compression creates thin and non-ideal current sheets in the magnetotail. NASA's MMS spacecraft fly through this compressed, thin current sheet, and reveal that a small-scale electric field forms (blue line on plot) which generates a highly sheared electron flow that drives lower hybrid waves (bright spots in plot) while the plasma density is relatively flat (orange dashed line on plot). Understanding the formation of these current sheets and the small-scale structures and dynamics within is important because they are thought to be important in the processes that initiate magnetic reconnection, which can drive intense space weather in the Earth's magnetosphere.

While movies show Earth as existing in a calm, pristine corner of the universe, in reality the near-Earth space environment is dangerous and dynamic. On any given day, hot charged particles and blobs of plasma, called the solar wind, travel from the sun and are deflected by the Earth's magnetic field, causing beautiful aurora around north and south poles.

During solar storms, however, the solar wind can compress the Earth's magnetic field, causing the magnetic field lines to rearrange and reconnect (also known as magnetic reconnection), shooting hot, dense plasma back toward the Earth.

Processes like these are commonly referred to as space weather. Because of the effect that these space-based disruptions can have on key elements of our modern society, such as telecommunication systems and power grids, obtaining a good understanding of these processes is just as essential as understanding ground-based weather.

A major challenge in understanding magnetic reconnection in the Earth's magnetosphere has been the difficulty in resolving the smaller kinetic-scale processes in satellite observations. NASA's Magnetospheric Multi-Scale (MMS) spacecraft, however, recently made it possible to make detailed studies of this previously unseen micro-scale physics.

Scientists at the U.S. Naval Research Laboratory (NRL) in Washington, D.C. have been using MMS data to study the micro-scale physics that occurs in the Earth's magnetotail, a thin portion of the magnetosphere that is illustrated in Figure 1. The magnetotail is formed when the Earth's magnetosphere is compressed by the solar wind into a thin current sheet, creating an ideal location to study magnetic reconnection.

NRL scientists recently made the first observation of plasma waves driven by highly sheared electron flows (velocity shear) in one of these compressed current sheets. The velocity shear is created in the current sheet when a localized electric field oriented perpendicular to the background magnetic field arises as the current sheet is compressed. These waves are a rich source of local enhanced diffusivities, which can trigger the magnetic reconnection process.

NRL scientists also used these observations to discover a key component missing from existing theoretical models of thin current sheets and magnetic reconnection-an ambipolar electric field that forms perpendicular to the current sheet and intensifies as the current sheet undergoes strong compression. A new theoretical model has since been developed and indicates that the ambipolar electric field can self-consistently develop in response to global compression of the plasma.

This in turn produces the velocity shear that can drive the waves observed in the spacecraft data. The current driven by the electron flow also changes the magnetic field profiles and allows for the formation of current sheets that are both thin and non-ideal, features which cannot simultaneously be explained by the standard models. The theoretical model results shine a new light on the key connection between the micro-scale and macro-scale physics.

These findings challenge the existing understanding of the physics of thin current sheets, and the identification of the shear-driven plasma waves also establishes the significance of the localized ambipolar electric field and the highly inhomogeneous conditions that drive the physics.

This deeper understanding of the physics at small scales, when combined with the larger scale models, will lead to a more complete knowledge of the global dynamics and especially the energy flux in the heliosphere from the sun into the Earth's immediate neighborhood that affects near-Earth space weather.


Related Links
U.S. Naval Research Laboratory
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR SCIENCE
SwRI-Led cubesat to assess the origins of hot plasma in the Sun's corona
San Antonio TX (SPX) Nov 02, 2021
NASA has selected the CubeSat Imaging X-Ray Solar Spectrometer (CubIXSS), led by Southwest Research Institute, to measure the elemental composition of hot, multimillion-degree plasmas in the Sun's corona - its outermost atmosphere. The nanosatellite is expected to be launched in 2024 as a secondary payload on another satellite launch. CubIXSS will determine the origins of hot plasma - highly ionized gas - in solar flares and active regions. Concentrations of strong and complicated magnetic fields ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Bioenergy crops better for biodiversity than food-based agriculture

Recycling CO2 to fuel a carbon-neutral future

Converting methane to methanol - with and without water

Making aircraft fuel from sunlight and air

SOLAR SCIENCE
This robot doesn't need to knock

A personalized exosuit for real-world walking

Giving robots social skills

They'll lead the robots out

SOLAR SCIENCE
Green hydrogen from expanded wind power in China

Scientists bring efficiency to expanding offshore wind energy

From oil to renewables, winds of change blow on Scottish islands

US unveils plans for seven major offshore wind farms

SOLAR SCIENCE
Top carmaker Toyota defends skipping COP26 emissions pledge

Producers target 2040 end date for polluting vehicles

DoorDash takes aim at Europe with purchase of Wolt

Battle the algorithms: China's delivery riders on the edge

SOLAR SCIENCE
Calling all "fusioneers"! New US fusion energy website launches

Feeling the heat: Fusion reactors used to test spacecraft heat shields

Visualizing the microscopic world of fast ions in fusion devices

Neutral particles a drag on disruptive plasma blobs

SOLAR SCIENCE
Options for the Diablo Canyon nuclear plant

Rolls-Royce launches nuclear reactor business

Greenland passes law banning uranium mining

Macron says France to build more nuclear reactors

SOLAR SCIENCE
COP26 strikes hard-fought deal but UN says 'not enough'

World needs trillions to face climate threat: draft UN report

COP26 draft urges boost to emissions cutting goals by 2022

Countries far apart as climate talks enter final week

SOLAR SCIENCE
Amazon deforestation hits monthly record in Brazil

Deforestation drives increasingly deadly heat in Indonesia: study

Climate change and fires: Bolivia's forests in peril

'We can't live in a world without the Amazon': scientist









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.