Solar Energy News  
EARLY EARTH
Microbial Mats Offer Clues To Life on Early Earth
by Charles Q. Choi for Astrobiology Magazine
Moffett Field CA (SPX) Mar 16, 2016


This is a stromatolite with well-developed branches from about 22 meters in Lake Joyce. Image courtesy Tyler Mackey.

Ancient clusters of rock that preserve some of the oldest microbes on Earth occasionally possess mysterious branch-like formations. Now, scientists think they know what might have caused this enigmatic branching - changes in microbial activity in the shallow lakes and seas where life first evolved.

These findings, published in the July issue of the journal Geobiology, could help researchers decipher potential signs of primitive life on distant planets, scientists said.

"Most of the history of life on Earth was dominated by microbial life, and if we want to anchor our understanding of microbial evolution to this history of life we need to look at what information we can pull out of the sedimentary record," said study lead author Tyler Mackey, a geo-biologist at the University of California, Davis.

Stromatolites, meaning "layered rock" in Greek, are dome-shaped clumps of rock layered a bit like cabbage leaves. These fossils were created by ancient mats of microbes that grew layer by layer as successive generations of microorganisms glommed onto sand and minerals.

Stromatolites are among the most ancient signs of life on Earth, forming as far back as 3.5 billion years ago. If such mounds are detected on Mars and other distant planets, they could potentially be a sign of primitive microbial mats.

"Microbes very rarely fossilize well, and even when they do, the shapes of the microbes don't necessarily tell us much about the lifestyle of the organisms," Mackey said. "The overall shape of microbial mats, however, is much more likely to be preserved."

Stromatolites can preserve signs of these mats, he explained.

The shape of stromatolites is intimately linked to environmental and microbial activity. These shapes varied over time, potentially shedding light on how the ancient world changed over the course of millions of years.

During the Proterozoic - the eon 2.5 billion to 540 million years ago before multicellular life appeared - some stromatolites grew branched formations rather than simple flat layers. The branches varied in shape, the degree of divergence from the underlying stromatolite, and whether the branches themselves branched.

Branches also varied in abundance over time, potentially serving as markers of long-term environmental changes and microbial evolution. However, the environmental and biological processes responsible for different stromatolite shapes are difficult to deduce from fossil stromatolites. Studies of modern microbial mats could yield insights into the factors that cause specific variations in stromatolite shape.

Mackey and his team analyzed mounds of microbial mats in the permanently ice-covered Lake Joyce in the McMurdo Dry Valleys in Antarctica. The researchers called them stromatolites even though they have not fully transformed into stone yet.

These modern stromatolites were created by photosynthesizing cyanobacteria - microbes that create their own energy by turning solar energy into chemical energy. These stromatolites were photosynthetically active as recently as 1997, and consist of layers of the mineral calcite and of mud. The researchers melted holes in the lake's ice, allowing divers to collect stromatolites from depths of 6 to 22 meters.

"Working in a site like Lake Joyce is both exhilarating and challenging because everything is new," Mackey said.

"There are so many observations that could be made, samples that could be collected. We need to maintain a balance between collecting samples that can test a hypothesis and being open to the unexpected."

Divers were tethered to an air supply and two-way voice communications with the surface.

"Work on tether can be a bit awkward, but we have the support of everyone on the surface to get the job done," Mackey said. "We can read out observations, get reminders on sampling targets and protocols, and request feedback when faced with unexpected circumstances."

Most of the stromatolites the scientists collected were 2 to 3 centimeters in diameter, with rare larger columns up to 6-centimeters wide. Eight of the 10 stromatolites branched, possessing either petals or branches on their sides or crowns.

The scientists found that the cyanobacterium species Phormidium autumnale led to smooth microbial mats, while absence of this microbe led to mats with small peaks and tufts. This bacterium was rare below depths of about 12.5 meters.

The researchers suggested that P. autumnale normally helped keep microbial mats smooth. However, rises in lake level could increase the amount of branching by suppressing P. autumnale, resulting in tufted mats that could serve as the basis for branched stromatolites.

"Understanding how life on Earth developed and was preserved helps us develop a search pattern for records of life on other planets in our solar system," Mackey said.

"If we were to find some ambiguous squiggly layers in sedimentary rocks on Mars, we would have a very high burden of proof to determine their origin, much less to actually say whether these were due to microbial communities. Microbial mat growth models like the one we have outlined here are a necessary step in developing interpretations of microbial community activity from the sedimentary record."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Paleontologists discover 250-million-year-old new species of reptile in Brazil
Birmingham, UK (SPX) Mar 15, 2016
An international team of scientists, from three Brazilian universities and one UK university, have discovered a new fossil reptile that lived 250 million years ago in the state of Rio Grande do Sul, southernmost Brazil. The species has been identified from a mostly complete and well preserved fossil skull that the team has named Teyujagua paradoxa. The fossil was discovered in the beginnin ... read more


EARLY EARTH
Stanford scientists make renewable plastic from carbon dioxide and plants

Sugar-power - scientists harness the reducing potential of renewable sugars

Chemical snapshot unveils path to greener biofuel

Fuel or food? Study sees increasing competition for land, water resources

EARLY EARTH
Super elastic electroluminescent 'skin' will soon create mood robots

Coming to a hotel near you: the robot humanoid receptionist

Some assembly required to boost robot ratings

In emergencies, should you trust a robot

EARLY EARTH
Re-thinking renewable energy predictions

Xinjiang Goldwind now world's top wind turbine producer

Norway's Statoil makes U.S. wind energy bet

Adwen Chooses Sentient Science For Computational Gearbox Testing

EARLY EARTH
China minister warns on subsidies as Uber, Didi battle

Investors sue VW in Germany for more than 3 bn euros

GM buys self-driving technology startup Cruise

GM, Lyft launch car rental program for drivers

EARLY EARTH
Creation of Jupiter interior, a step towards room temp superconductivity

Converting atmospheric carbon dioxide into batteries

Hundred million degree fluid key to fusion

Multi-scale simulations solve a plasma turbulence mystery

EARLY EARTH
Russian Scientists Suggest New 'Nuclear Battery' Concept

Argentina could be involved in building Bolivian nuclear research center

Czech power group CEZ profit down on drop in prices, nuclear output

Energy giants call German nuclear phase-out 'expropriation'

EARLY EARTH
Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

New model maps energy usage of every building in Boston

EARLY EARTH
CCTV in the sky helping farmers fight back against illegal loggers

Eastern US forests more vulnerable to drought than before 1800s

Austin's urban forest

US joins Honduran probe of environmentalist's murder









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.