Solar Energy News  
FLORA AND FAUNA
Microbiomes could hold keys to improving life as we know it
by Staff Writers
Boston MA (SPX) Oct 30, 2015


Microbial life forms including viruses, bacteria and fungi are the most diverse and abundant organisms on earth.

A consortium of 48 scientists from 50 institutions in the United States - including Pamela Silver, Ph.D., a Core Faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard University - are calling for a Unified Microbiome Initiative that would span national cross-institutional and cross-governmental agency support.

The group, called the Unified Microbiome Initiative Consortium (UMIC), envisions that a coordinated effort would drive forward cutting edge microbiome research, enabling breakthrough advances across medicine, ecosystem management, sustainable energy and production of commodities. Their proposal was published online in the journal Science.

Microbial life forms including viruses, bacteria and fungi are the most diverse and abundant organisms on earth. They have shaped our evolutionary origins for billions of years and continue to have widespread impact on the planet, its environment and the species inhabiting it.

Together, they make up microbiomes that influence each other, the environment, and the host organisms that these microbial communities thrive in. The UMIC foresees that the microbiomes populating our planet and its many diverse species and environments could be leveraged through genetic engineering for applications that improve the greater good, and that many milestones could be reached on this front within ten years.

"Microbes are everywhere. Therefore understanding microbiomes, whether they be the ones that live in and on our bodies or the ones in the environment, is essential to understanding life," said Silver, who in addition to being one of the faculty leaders on the Wyss Institute's Synthetic Biology platform, is also the Elliot T. and Onie H. Adams Professor of Biochemistry and Systems Biology at Harvard Medical School (HMS) and a founding member of the Department of Systems Biology at HMS.

The UMIC consists of leading microbiologists, ecologists, physical scientists, engineers, and scientists in the emerging field of synthetic biology. The group coalesced during a series of coordinated but separately convened meetings held by The White House Office of Science and Technology Policy and The Kavli Foundation. The proposal in Science got its roots from the UMIC's efforts to identify challenges and opportunities in microbiome research as well as their strategic recommendations for accelerating discovery that emerged from these meetings.

The power of genome sequencing and genetic engineering has enabled synthetic biologists like Silver and her colleagues on the Wyss Institute Synthetic Biology platform to begin harnessing these microbes for diverse applications that could impact our health, ecosystem, and production of food and energy sources.

"Understanding how [microbiomes] work might hold the key to advances as diverse as fighting antibiotic resistance and autoimmune diseases, reclaiming ravaged farmland, reducing fertilizer and pesticide use, and converting sunlight into useful chemicals," said Jeff F. Miller, Ph.D., Director of the California NanoSystems Institute and corresponding author of the Science paper.

By metabolic processes, microbes synthesize countless different molecules, which through genetic engineering could lead to colonies of microbial "workers" being used for the sustainable synthesis of pharmaceuticals, materials and chemical commodities. Genetically engineered microbes could also produce biofuels through metabolic processes and conversion of solar energy into liquid fuel, according to work already underway by Silver at the Wyss Institute and HMS.

Microbes also play a vital role in balancing biogeochemical processes, such as removing carbon dioxide from the atmosphere. The interactions between soil, plant roots and microbes also play an important role in plant health and crop yield.

Furthermore, the microbiomes in our gastrointestinal tracts regulate wide-ranging physiological, metabolic, immunologic, cognitive, behavioral, and psychiatric traits. Understanding and manipulating human microbiomes could be key to managing physical and mental health.

Silver and her team have already begun developing several potential avenues for leveraging gut microbes to improve health. In collaboration with Wyss Core Faculty member James Collins, Ph.D., Silver has engineered genetically programmed bacterial "reporters" that can detect and record conditions in the gastrointestinal tract. And, working with Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., and Wyss Institute Senior Staff Scientist Jeffrey Way, Ph.D., Silver is developing consortia of synthetic microbes that could be used to treat gastrointestinal illness.

Her expertise and experience in these emerging areas of synthetic biology has enabled Silver to contribute her thought leadership as a member of the UMIC to how the proposed Unified Microbiome Initiative could integrate focus areas to accelerate microbiome research.

"I'm interested in engineering microbes as a way to interrogate their behavior," said Silver. "The purpose of this unified initiative is to determine what are the big questions we have about the microbiome and what are the specific technologies we need in order to investigate those questions."

Some of the big questions the group hopes to address through an organized coalition include understanding how microbes assemble into communities and what makes them resilient or resistant to perturbation, how genes in the microbiome interact with one another, which genes in the microbiome are associated with which organisms, as well as how we can beneficially harness the microbiomes of humans, animals, plants and environments.

To find the answers to these questions, scientists must first be supported in the development of breakthrough technologies for investigating microbiomes. Specifically, the group recommends development of improved computational methods for analyzing and predicting the vast number of unknown genes and their functions comprising microbiomes; a transition from gene-specific to whole-genome based analysis through improved genome reference libraries and sequencing methods; developing high-powered imaging methods for visually interrogating communities of microbes down to the individual level; new adaptive modeling systems and data reporting tools; improved genetic engineering techniques for perturbing microbial communities; and novel methods to mimic natural environments for supporting microbiome growth in the laboratory, among others.

"Discovery of the importance of the existence and importance of the microbiome has provided a new frame of reference for our understanding of health and our environment," said Ingber, who in addition to directing the Wyss Institute is the Judah Folkman Professor of Vascular Biology at HMS and Boston Children's Hospital and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences.

"A nation-wide coordinated effort to invest in understanding and leveraging microbiomes could open entirely new frontiers in biotechnology and medicine, and lead to solutions that would not be possible in any other way."

The paper calling for a Unified Microbiome Initiative can be found in the October 30 issue of Science or through an online portal made available by the American Society for Microbiology.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Wyss Institute for Biologically Inspired Engineering at Harvard
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
FLORA AND FAUNA
CWRU biologists find keys to driving a cockroach
Cleveland, OH (SPX) Oct 26, 2015
Researchers at Case Western Reserve University have identified neurons in a cockroach's brain that control whether the insect walks slow or fast, turns right or left or downshifts to climb. By selectively stimulating these same neurons, the scientists can cause the roach to replicate the movements. The finding makes clear how the insect brain directs the body to move in an intended direction, in ... read more


FLORA AND FAUNA
Wood instead of petroleum: Producing chemical substances solely from renewable resources

New UT study highlights environmental, economic shortcomings of federal biofuel laws

Light emitting diodes made from food and beverage waste

Study: Africa's urban waste could produce rural electricity

FLORA AND FAUNA
Robot's influent speaking just to get attention from you

'Spring-mass' technology heralds the future of walking robots

Dive of the RoboBee

Can ballet bugs help us build better robots

FLORA AND FAUNA
E.ON finishes German wind farm

Adwen and IWES sign agreement for the testing of 8MW turbine

US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

FLORA AND FAUNA
Toyota view on Volkswagen scandal: don't obsess over No. 1

Pollution scam pushes VW into first quarterly loss in 15 years

Tokyo Motor Show kicks off with a spotlight on self-driving cars

Automakers win reprieve on EU pollution testing

FLORA AND FAUNA
Capacitor breakthrough

Canadian researchers find geothermal heat pumps most feasible in Halifax

Smart Home Revenues to Reach $100 Billion by 2020

Lighter, long-lasting batteries made from silicon

FLORA AND FAUNA
Bolivia announces plans for nuclear research complex

UK Nuclear Plans in Meltdown After Shareholder Warning

Argentina and Russia to enhance energy cooperation

Japan on track for another nuclear reactor restart

FLORA AND FAUNA
National contributions provide entry point for the low-carbon transformation

Climate pledges keep 'door open' to warming under 2C

UN chief says 'no plan B or planet B' in climate talks

To reach CO2, energy goals, combine technologies with stable policies

FLORA AND FAUNA
Amazonian natives had little impact on land, new research finds

NASA/USGS Mission Helps Answer: What Is a Forest

Elephants boost tree losses in South Africa's largest savanna reserve

More rain leads to fewer trees in the African savanna









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.