Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Modeling the breaking points of metallic glasses
by Staff Writers
Berkeley CA (SPX) Nov 27, 2012


A simulation of crack initiation in a metallic glass. The metallic glass on the left is initially more relaxed, due to a longer heat treatment, than the metallic glass on the right. The very different crack tip shapes and deformation patterns under the same external conditions result in a significantly reduced breaking resistance for the more relaxed glass. Credit: Courtesy of Christopher Rycroft, Berkeley Lab.

Metallic glass alloys (or liquid metals) are three times stronger than the best industrial steel, but can be molded into complex shapes with the same ease as plastic. These materials are highly resistant to scratching, denting, shattering and corrosion. So far, they have been used in a variety of products from golf clubs to aircraft components.

And, some smartphone manufacturers are even looking to cast their next-generation phone cases out of it. But despite their potential, the mechanical properties of these substances are still a scientific mystery. One lingering question is why they have such wildly different toughness and breaking points, depending on how they are made.

Although this may not be a huge concern for small applications like smartphone cases it will be extremely important if these materials are ever used in structural applications where they would need to support large loads.

Recently, Christopher Rycroft of the Lawrence Berkeley National Laboratory's (Berkeley Lab's) Computational Research Division has developed some novel computational techniques to address this question.

When Rycroft combined these techniques with a mechanical model of metallic glass developed by Eran Bouchbinder and his colleagues at Israel's Weizmann Institute, the two were able to propose a novel explanation of the physical process behind the large variations in breaking points of metallic glasses. Their results are also in qualitative agreement with laboratory experiments.

"We hope that this work will contribute to the understanding of metallic glasses, and aid in their use in practical applications. Ultimately, we would like to develop a tool capable of making quantitative predictions about the toughness of metallic glasses depending on their preparation method," says Rycroft.

What is a Metallic Glass? And, Why is it So Difficult to Model?

Scientists define "glass" as a material that cools from a liquid state to a solid state without crystallizing-which is when atoms settle into a lattice, or a highly regular spatial pattern.

Because many metal lattices are riddled with defects, these materials "deform", or permanently bend out of shape, relatively easily.

When crystallization does not occur, the atoms settle into a random arrangement. This atomic structure allows metallic glasses to spring back into shape instead of deforming permanently. And without the defects, some metallic glasses also have extremely efficient magnetic properties.

Rycroft notes that one of the biggest mysteries in condensed matter physics is how glass transitions from a liquid state to a solid state. To successfully create metallic glass, the metal has to cool relatively quickly before atomic lattices form.

"Depending on how you prepare or manipulate these metallic glasses, the breaking points can differ by a factor of 10," says Rycroft. "Because scientists don't completely understand how glass transitions from liquid to solid state, they have not been able to fully explain why the breaking points of these materials vary so widely."

According to Bouchbinder, computer models also have a hard time predicting the breaking points of metallic glass because the timescale of events varies dramatically-from microseconds to seconds.

For instance, researchers can bend or pull the material for several seconds before it breaks, which occurs almost instantaneously. And the material's internal plastic deformation-the process where it irreversibly deforms-occurs on an intermediate timescale.

"We've actually been able to develop some numerical methods to capture these differences in timescales," says Rycroft, of the techniques used in the recent paper.

When Rycroft incorporated these methods into Bouchbinder's mechanical model and calibrated it based on available data, the duo managed to simulate and better understand the breaking points of metallic glass alloys based on their preparation process.

He notes that this model is rather unique as it combines novel and flexible numerical methods with recent insights about the physics of glasses. The simulations have also been able to predict the large decreases in toughness that are seen in laboratory experiments.

"If you can vary the way metallic glass is prepared in computer models and capture the differences in how it breaks, you can pose a reasonable explanation for why this occurs. This might also give you a better idea about how the glass transitions from a liquid to a solid, as well as the mechanical properties of a glass," says Rycroft.

"We've essentially created something that might evolve into a tool for predicting the toughness of metallic glasses."

"For quite some time I've wanted to calculate the fracture toughness of metallic glasses, but knew that this was a very tough mathematical and computational challenge, certainly well above my abilities, and probably above the capabilities of conventional computational solid mechanics," says Bouchbinder.

"I think that Rycroft's methods have opened the way to new possibilities and I am enthusiastic to see where this can lead us."

Rycroft and Bouchbinder are co-authors on a paper recently published in Physical Review Letters.

.


Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New device hides, on cue, from infrared cameras
Boston MA (SPX) Nov 27, 2012
Now you see it, now you don't. A new device invented at the Harvard School of Engineering and Applied Sciences (SEAS) can absorb 99.75% of infrared light that shines on it. When activated, it appears black to infrared cameras. Composed of just a 180-nanometer-thick layer of vanadium dioxide (VO2) on top of a sheet of sapphire, the device reacts to temperature changes by reflecting dramatically m ... read more


TECH SPACE
Marine algae seen as biofuel resource

Engineering plants for biofuels

Algae Biomass Organization hails new UCSD study showing saltwater algae viable for biofuels

Algae can draw energy from other plants

TECH SPACE
Study of risks to humankind proposed

Robotic Fish Research Swims into New Ethorobotics Waters

Toshiba unveils dog-like robot for Fukushima plant

Ban 'killer robots,' rights group urges

TECH SPACE
Britain: Higher energy bills 'reasonable'

Areva commits to Scotland turbine plant

AREVA deploys its industrial plan to produce a 100 percent French wind power technology

Gannets could be affected by offshore energy developments

TECH SPACE
GM cars to use Apple voice assistant Siri

Canada orders automakers to halve emissions

Honda chief eyes more exports from US

Renault to set up in China: industry source

TECH SPACE
Transforming noise into mechanical energy at nanometric level

Turn to gas to fight climate change, Qatar says at UN talks

Philippine minister tells cadets 'protect what is ours'

Repairs force US Navy to cut back carriers in Gulf

TECH SPACE
Japan's ruling party promises to phase out nuclear power

Nuclear power key issue in Japan elections

Problems at nuclear waste plant described

Japanese firm wants reactors back online

TECH SPACE
A low-carbon Finland is a great challenge, but an achievable one

Official "Green Tuesday" Launch November 27, 2012

Poland to invest 24 billion euros in energy by 2020

Analyzing the cost of federal and other renewable energy subsidies in Texas

TECH SPACE
Drained wetlands give off same amount of greenhouse gases as industry

Maple syrup, moose, and the local impacts of climate change

Dry leaves make for juicy science

Preserve the services of mangroves - Earth's invaluable coastal forests




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement