Solar Energy News  
WATER WORLD
Models overestimate rainfall increases due to climate change
by Staff Writers
Livermore CA (SPX) Dec 15, 2015


Global precipitation increase per degree of global warming at the end of the 21st century may be about 40 percent smaller than what the models currently predict. Image courtesy of Haley Luna. For a larger version of this image please go here.

Lawrence Livermore researchers and collaborators have found that most climate models overestimate the increase in global precipitation due to climate change.

Specifically, the team looked at 25 models and found they underestimate the increase in absorption of sunlight by water vapor as the atmosphere becomes moister, and therefore overestimate increases in global precipitation. The team found global precipitation increase per degree of global warming at the end of the 21st century may be about 40 percent smaller than what the models, on average, currently predict. The research appears in the journal Nature.

Evaluation of model-predicted global precipitation change with actual precipitation observations is difficult due to uncertainties arising from many sources, including insufficient spatial and historical data coverage. As an alternative approach, the team, made up of LLNL scientist Mark Zelinka and colleagues from the University of California, Los Angeles, including lead author Anthony DeAngelis, evaluated model-simulated global precipitation change through consideration of the physical processes that govern it.

The team found that the increase in global precipitation simulated by models is strongly controlled by how much additional sunlight is absorbed by water vapor as the planet warms: Models in which more sunlight is absorbed by water vapor tend to have smaller increases in precipitation.

They demonstrated that model-to-model differences in increased absorption of sunlight were not controlled by how much their humidity increased, but by how much additional sunlight was trapped in the atmosphere for a given increase in humidity. Conveniently, this quantity can be measured from space, allowing the team to assess how well the models capture the physics controlling changes in global precipitation.

"This comparison with observations allowed us to see quite clearly that most models underestimate the increased absorption of sunlight as water vapor increases," Zelinka said. "Because this acts as such a strong lever on global precipitation changes, the models are likely overestimating the increase in global precipitation with global warming."

The intensification of the hydrologic cycle is an important dimension of climate change that can have significant impacts on human and natural systems, perhaps more so than rising temperatures alone, according to Zelinka.

Commonly measured by the increase in globally averaged precipitation per degree of surface warming, hydrologic cycle intensification predictions vary substantially across global climate models.

"We sought to understand the sources of this uncertainty and use the best available observations to narrow- in on the most likely response," Zelinka said. "We cannot expect to make useful predictions of local water cycle changes that are most relevant for societal impacts if we do not understand and accurately simulate the change in globally averaged precipitation."

The absorption of sunlight by water vapor is vital to understand future global precipitation changes.

Condensational heating by precipitation, absorption of sunlight by water vapor and fluxes from the Earth's surface all combine to heat the atmosphere, keeping it in energy balance with cooling due to thermal emission up to space and down to the Earth's surface.

As the planet warms and the atmosphere emits more thermal radiation, the heating components also must increase to maintain atmospheric energy balance, and the two that matter most are absorption of sunlight and precipitation. The more heating provided by absorption of sunlight as the planet warms, the less heating is required by precipitation increases.

The study notes that more reliable predictions of future precipitation change can be made by improving the representation of how radiation is transmitted through the atmosphere in global climate models. The models that have more sophisticated representations better agree with observations.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Livermore National Laboratory
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Deep core of African lake gives insight to ancient lake levels, biodiversity
Syracuse NY (SPX) Dec 14, 2015
Syracuse Earth sciences professor Christopher Scholz and former Ph.D. student Robert Lyons have an unprecedented glimpse into the past of a lake with explosive biodiversity. Along with colleagues from six other universities, Scholz and Lyons have unearthed a 380-meter-deep time capsule from Lake Malawi. Lyons says the core shows that "East African moisture history over the last 1.3 million years ... read more


WATER WORLD
Scientists unveil urine-powered wearable energy generator

Turning poop into plastic at Paris climate talks

New catalyst to make eco-fiendly bio-based plastics possible

Plant-inspired power plants

WATER WORLD
Scientists teach machines to learn like humans

Robot adds new twist to NIST antenna measurements and calibrations

UW roboticists learn to teach robots from babies

Swimming devices could deliver drugs inside the body

WATER WORLD
UN report takes global view of 'green energy choices'

U.S. offshore wind project wraps up inaugural construction season

Dogger Bank lidar confirms technology meets met masts for wind data collection

Pilot Hill Wind Project Closes Financing from GE and MetLife

WATER WORLD
Cars driving the rebalancing of Chinese economy: IEA

Volkswagen says pollution cheating dates back to 2005

Volkswagen to start recalls in France in February

Mystery electric car startup unveils $1 bn US factory

WATER WORLD
Carbon capture analyst: 'Coal should stay in the ground'

Scientists see the light on microsupercapacitors

Storing electricity in paper

Saft to supply LION batteries to power Textron control stations

WATER WORLD
China to Operate 110 Nuclear Reactors by 2030

Japan and India agree bullet train, nuclear deals

AREVA wins contract to dismantle the vessel internals of the Superphenix reactor

New Delhi to construct six fast breeder reactors over 15 years

WATER WORLD
MIT Research offers new approach for China's carbon trading system

UN climate deal blow to fossil fuels: green groups

Addressing climate change should start with energy efficiency

As Paris summit tries to save the planet, how green is France?

WATER WORLD
Irish police go hi-tech to combat Christmas tree thieves

US forest products in the global economy

N. Korea 'declares war' on deforestation at Paris climate talks

At UN talks, African countries aim to restore 100 mn hectares of forest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.