Solar Energy News  
SOLAR DAILY
Modified quantum dots capture more energy from light and lose less to heat
by Staff Writers
Los Alamos NM (SPX) Oct 08, 2019

Doping a quantum dot with magnesium (right half of graphic) speeds the capture of energy from a hot electron to 0.15 picoseconds, outpacing losses to phonons in the crystal lattice.

Los Alamos National Laboratory scientists have synthesized magnetically-doped quantum dots that capture the kinetic energy of electrons created by ultraviolet light before it's wasted as heat.

"This discovery can potentially enable novel, highly-efficient solar cells, light detectors, photocathodes and light-driven chemical reactions," said Victor Klimov, lead researcher on the Laboratory's quantum dot project.

In standard solar cells, a large amount of sunlight energy is wasted as heat. This waste occurs due to the lack of effective approaches for capturing kinetic energy of 'hot' electrons generated by photons in the green to ultraviolet portion of the sun's light spectrum.

The problem is that hot electrons lose their energy very quickly due to interactions with crystal lattice that the devices are made of, leading to vibrations known as phonons. This process typically occurs in a few picoseconds (trillionths of a second).

Previous efforts to capture hot-carrier energy have exploited the transfer of kinetic energy from the energetic hot electron to an immobile, low-energy electron exciting it to a current-conducting state.

This effect, known as carrier multiplication, doubles the number of electrons contributing to the photocurrent which can be used for boosting the performance of solar cells. In most conventional materials, however, the energy losses to phonons outpace the energy gains of carrier multiplication.

In their study published in Nature Nanotechnology, researchers demonstrate that incorporating magnetic ions into quantum dots can greatly enhance useful, energy-producing interactions so as they become faster than wasteful phonon scattering.

To implement these ideas, the researchers prepared manganese-doped quantum dots based on cadmium selenide. "The photon absorbed by the cadmium selenide quantum dot creates an electron-hole pair, or an exciton," said Klimov."This exciton is quickly trapped by the dopant creating an excited state that stores energy much like a compressed spring.

When the second photon is absorbed by the quantum dot, the stored energy is released and transferred to the newly created exciton promoting it to a higher-energy state. The energy release by the manganese ion is accompanied by the flip of its magnetic moment, known as spin. Hence this process is termed spin-exchange Auger energy transfer."

An intriguing observation of LANL scientists was the extremely short time scale of the spin-exchange Auger interactions - around one tenth of a picosecond. To their surprise, these interactions were quicker than phonon emissions, which were generally believed to be the fastest process in semiconductor materials.

To prove that the new effect could beat phonon-assisted cooling, Los Alamos researchers demonstrated that properly designed magnetically doped quantum dots allowed them to extract a hot electron created by an ultraviolet photon before it loses its energy to heating the crystal lattice.

These paradigm-shifting findings open exciting opportunities for exploiting spin-exchange Auger processes in advanced schemes for boosting the performance of solar cells or driving unusual photochemical reactions. Interesting opportunities are also envisioned in areas of high-sensitivity, high-speed light detection and new types of light-driven electron sources.

Research Report: Hot-Electron Dynamics in Quantum Dots Manipulated by Spin-Exchange Auger Interactions


Related Links
Los Alamos National Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Electrode-fitted microscope points to better designed devices that make fuel from sunlight
Eugene OR (SPX) Oct 08, 2019
Using an atomic-force microscope fitted with an electrode tip 1,000 times smaller than a human hair, University of Oregon researchers have identified in real time how nanoscale catalysts collect charges that are excited by light in semiconductors. As reported in the journal Nature Materials, they discovered that as the size of the catalytic particles shrinks below 100 nanometers the collection of excited positive charges (holes) becomes much more efficient than the collection of excited negative c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Finding microbial pillars of the bioenergy community

Getting plastics, fuels and chemical feedstocks from CO2

Plant research could benefit wastewater treatment, biofuels and antibiotics

Fe metabolic engineering method produces butanetriol sustainably from biomass

SOLAR DAILY
Controlling robots across oceans and space

Vietnamese roll out Transformers-inspired robot with green message

NASA designing shapeshifting robots for Saturn's moons

When it comes to robots, reliability may matter more than reasoning

SOLAR DAILY
Norway's Equinor, British SSE chosen for world's biggest offshore wind farm

Sparks fly as Germany's climate plan hits rural landscapes

Government vows action as German wind industry flags

Angry residents send German wind industry spinning

SOLAR DAILY
Crisis-hit Nissan names China unit head Makoto Uchida as new CEO

Volkswagen faces first mammoth diesel lawsuit on home turf

Volkswagen faces first mammoth diesel lawsuit on home turf

Revamped Uber app adds transit options, passenger safety features

SOLAR DAILY
How to Harmonise Wildlife and Energy Manufacturing - A Case Study

Air Force scientists discover unique stretchable conductor

Solving the longstanding mystery of how friction leads to static electricity

Paramagnetic spins take electrons for a ride, produce electricity from heat

SOLAR DAILY
Bill for long-delayed French nuclear plant rises to 12.4 bn euros

Japan power firm executives quit over $3 million gift scandal

GE Hitachi Nuclear Energy announces new reactor technology collaboration in Estonia

France says nuclear plant overruns 'unacceptable'

SOLAR DAILY
Canada, if Trudeau wins, to hit net zero emissions by 2050: minister

Sixty-six countries vow carbon neutrality by 2050: UN

Italy's Enel to reduce C02 emissions 70% by 2030

Germany planning climate action worth over 100 bn euros

SOLAR DAILY
Brazil highways drive Amazon development -- and destruction

India's top court halts tree felling after protests

Ancient Maya canals and fields show early and extensive impacts on tropical forests

Priest shortage in Amazon eroding Catholic influence: bishops









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.