Solar Energy News
EARLY EARTH
Molecular fossils shed light on ancient life
C27 sterols have been found in rocks 850 million years old, while C28 and C29 traces appear about 200 million years later. This is thought to reflect the increasing diversity of life at this time and the evolution of the first fungi and green algae.
Molecular fossils shed light on ancient life
by Andy Fell for UCDavis News
Davis CA (SPX) Dec 08, 2023

Paleontologists are getting a glimpse at life over a billion years in the past based on chemical traces in ancient rocks and the genetics of living animals. Research published Dec. 1 in Nature Communications combines geology and genetics, showing how changes in the early Earth prompted a shift in how animals eat.

David Gold, associate professor in the Department of Earth and Planetary Sciences at the University of California, Davis, works in the new field of molecular paleontology, using the tools of both geology and biology to study the evolution of life. With new technology, it's possible to recover chemical traces of life from ancient rocks, where animal fossils are scarce.

Lipids in particular can survive in rocks for hundreds of millions of years. Traces of sterol lipids, which come from cell membranes, have been found in rocks up to 1.6 billion years old. In the present day, most animals use cholesterol - sterols with 27 carbon atoms (C27) - in their cell membranes. In contrast, fungi typically use C28 sterols, while plants and green algae produce C29 sterols. The C28 and C29 sterols are also known as phytosterols.

C27 sterols have been found in rocks 850 million years old, while C28 and C29 traces appear about 200 million years later. This is thought to reflect the increasing diversity of life at this time and the evolution of the first fungi and green algae.

Without actual fossils, it's hard to say much about the animals or plants these sterols came from. But a genetic analysis by Gold and colleagues is shedding some light.

Don't make it, eat it
Most animals are not able to make phytosterols themselves, but they can obtain them by eating plants or fungi. Recently, it was discovered that annelids (segmented worms, a group that includes the common earthworm) have a gene called smt, which is required to make longer-chain sterols. By looking at smt genes from different animals, Gold and colleagues created a family tree for smt first within the annelids, then across animal life in general.

They found that the gene originated very far back in the evolution of the first animals, and then went through rapid changes around the same time that phytosterols appeared in the rock record. Subsequently, most lineages of animals lost the smt gene.

"Our interpretation is that these phytosterol molecular fossils record the rise of algae in ancient oceans, and that animals abandoned phytosterol production when they could easily obtain it from this increasingly abundant food source," Gold said. "If we're right, then the history of the smt gene chronicles a change in animal feeding strategies early in their evolution."

Co-authors on the paper are: at UC Davis, Tessa Brunoir and Chris Mulligan; Ainara Sistiaga, University of Copenhagen; K.M. Vuu and Patrick Shih, Joint Bioenergy Institute, Lawrence Berkeley National Laboratory; Shane O'Reilly, Atlantic Technological University, Sligo, Ireland; Roger Summons, Massachusetts Institute of Technology. The work was supported in part by a grant from the National Science Foundation.

Research Report:Common origin of sterol biosynthesis points to a feeding strategy shift in Neoproterozoic animals

Related Links
University of California - Davis
Explore The Early Earth at TerraDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARLY EARTH
Study suggests micrometeorites as key nitrogen source for primordial Earth
Kyoto, Japan (SPX) Dec 04, 2023
A recent study published in 'Nature Astronomy' reveals a novel understanding of how nitrogen, an essential component for life, may have been transported to Earth during its formative years. This research, involving an international team of scientists including members from the University of Hawai'i at Manoa, led by Kyoto University, points to micrometeorites as a likely source. Micrometeorites, small extraterrestrial particles, are believed to originate from icy bodies in the outer Solar System. T ... read more

EARLY EARTH
Nigerians look to biofuel as cost of cooking gas soars

Chinese company gives leftover hotpot oil second life as jet fuel

Cheap and efficient ethanol catalyst from laser-melted nanoparticles

UK permits 'world-first' flight powered by sustainable fuels

EARLY EARTH
Google looks to take generative AI lead with Gemini

AI accelerates problem-solving in complex scenarios

Snail-inspired robot could scoop ocean microplastics

Trimble to provide new positioning system to Sabanto for RoboTractors

EARLY EARTH
UK unveils massive news windfarm investment by UAE, German firms

Wind and solar projects can profit from bitcoin mining

Winds of change? Bid to revive England's onshore sector

Drones to transport personnel and materials to offshore wind farms

EARLY EARTH
Stellantis to test electric vehicle battery swapping in Madrid

China's electric bus revolution glides on

To help robocars make moral decisions, researchers ditch the 'trolley problem'

US proposes EV tax credit rules to curb Chinese inputs

EARLY EARTH
SLAC Joins Forces with Leading Institutions to Advance Fusion Energy Research

Cost-effective electrocatalysts for cleaner hydrogen fuel production

Japanese experimental nuclear fusion reactor inaugurated

New study shows how universities are critical to emerging fusion industry

EARLY EARTH
Orano wraps up Crystal River 3 Reactor dismantling ahead of schedule

China launches world's first fourth-generation nuclear reactor

Making nuclear energy facilities easier to build and transport

Framatome backs Global Morpho Pharma's high-capacity Lutetium-177 separation process

EARLY EARTH
'Unabated': a word to split the world at COP28

'Climate conscious' banks lend more to polluters; Denmark wants 90% cut by 2040

France adopts corporate sustainability reporting

Are COPs useful? A defence from five participants

EARLY EARTH
Minding the gap on tropical forest carbon

'It destroys everything': Amazon community fights carbon credit project

New study offers cautious hope about the resilience of redwoods

France pays Congo, Papua New Guinea $150 million to save forests

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.