Solar Energy News  
TECH SPACE
Monopole current offers way to control magnets
by Staff Writers
Tokyo, Japan (SPX) Dec 07, 2017


illustration only

In work published in Physical Review Letters, scientists from RIKEN in Japan have discovered interesting new magnetic properties of a type of materials known as "quantum spin ice." These materials demonstrate interesting properties as they behave as "frustrated magnets" - systems that can settle into various magnetic states because of their special geometry.

One important property of these materials is that they have virtual monopoles - particles that are either north or south but not like typical magnets, which invariably have both a north and south pole confined together.

Using numerical simulations, the group showed how a magnetic field could be used to control the properties of north and south poles, which are fractionalized from magnetic moments of electrons, on a frustrated magnet called a quantum spin ice.

The group first proposed a model for quantum spin ice - spin ice based on quantum properties - in 2010 in order to describe the low-energy magnetic properties of magnetic rare-earth pyrochlores - a type of mineral that show interesting physical properties. In 2012, experiments showed that this model was valid.

This system includes a quantum spin liquid state where spins - the property of electrons that lead to magnetic properties - are prevented from ordering and freezing by zero-point motion, a type of motion allowed even at zero temperature under quantum mechanics, of their monopoles. Since monopole charges are subject to a conservation law, the motion of north and south poles directly affects the direction of magnetic moments in the system.

In addition, electric charges are not carried by these monopoles, and thus the monopole current is not accompanied by an electric current that would lead to a large energy loss through Joule heat.

"Because of this," says Shigeki Onoda, the leader of the group, "monopole current offers a potentially efficient way of controlling magnets without loss."

Through this work, the researchers revealed that there are successive transitions from the quantum spin liquid state if a magnetic field is applied in a special direction along which kagome-lattice layers and triangular-lattice layers are stacked one on top of the other.

First, the magnetization of the system rises smoothly to a value two-third of the maximum value in the quantum spin liquid state, and then remains at that level in a finite range of the field strength, which is called the 2/3 magnetization plateau. In this plateau state, the zero-point motion of monopoles are spatially confined and localized, and thus this state cannot host a coherent monopole current.

However, as the strength of the magnetic field is increased, the magnetization of the material eventually begins to rise again and concomitantly, the monopole charges become disproportionate and show a superfluidity.

This is a magnetic analogue of a supersolid in helium 4, where the atoms show both a non-uniform spatial distribution and a superfluidity, which supports frictionless and thus dissipationless current, at extremely low temperature. The monopole supersolid phase survives until the magnetization saturates to the maximum value.

According to Onoda, "Our work indicates that the conductivity associated with the monopole current can be substantially controlled by applying a magnetic field to quantum spin ice and that it is possible to host dissipationless monopole current in the monopole supersolid phase. Our findings may also open a novel route to the efficient control of magnetism for a range of potential applications such as memory devices."

Research paper

TECH SPACE
Study shows how to get sprayed metal coatings to stick
Boston MA (SPX) Dec 01, 2017
When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT have found that in some situations, melting can actually inhibit metal bonding rather than promote it. The surprising and counterintuitive finding could have serious im ... read more

Related Links
RIKEN
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Researchers generate electricity from low-cost biomaterial

Breakthrough process for directly converting methane to methanol

Surrey develops new 'supercatalyst' to recycle carbon dioxide and methane

Convert methane to hydrogen without forming carbon dioxide at low-cost

TECH SPACE
Robots foresee future with automated visualized predictions

Helping hands guide robots as they learn

Lockheed Martin autonomous driving system tops 55,000M in extended test

Cheap origami-inspired muscles are both soft and strong

TECH SPACE
U.S. wind turbines getting taller and more efficient

New wind farm in service off the British coast

End tax credits for wind energy, Tennessee Republican says

New York sets high bar for wind energy

TECH SPACE
Hearing hybrid and electric vehicles while quieting noise pollution

London's iconic black cabs go electric

GM recalling 1 million cars in China

GM sees 2019 launch for self-driving taxi fleet

TECH SPACE
Superior hydrogen catalyst just grows that way

Army researchers seek better batteries

Musk's record-breaking battery officially launches in Australia

Batteries with better performance and improved safety

TECH SPACE
For Gabon's sickly uranium miners, a long quest for compensation

Belarus nuclear power plant stirs fears in Lithuania

Lightbridge and AREVA NP Sign Agreements to Immediately Advance Fuel Development

UK made grave errors over Hinkley nuclear project: MPs

TECH SPACE
Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

TECH SPACE
NASA Survey Technique Estimates Congo Forest's Carbon

Greenpeace slams Indonesia palm oil industry on deforestation

Amazon's recovery from forest losses limited by climate change

Poland says compliant with EU court order against ancient forest logging









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.