Solar Energy News  
WATER WORLD
Monsoon intensity enhanced by heat captured by desert dust
by Staff Writers
Austin TX (SPX) Jul 29, 2016


Monsoon rains fall on the green valleys of Madhya Pradesh, India. Image courtesy Rajarshi Mitra. For a larger version of this image please go here.

Variations in the ability of sand particles kicked into the atmosphere from deserts in the Middle East to absorb heat can change the intensity of the Indian Summer Monsoon, according to new research from The University of Texas at Austin. The research was published in Scientific Reports, an open access journal from the publishers of Nature.

The Indian monsoon is a period of intense rainfall that more than a billion people rely on to bring rains to farmland. The results of the study could help improve monsoon prediction models, which usually use a constant value for sand particles' heat-absorbing ability. Because the absorbing ability varies greatly with region and time, assigning a constant heat-absorbing ability for the particles tends to underestimate the impact that absorbed heat can have on the monsoon system, the authors said.

The study was led by Qinjian Jin, a postdoctoral researcher at the Massachusetts Institute of Technology, who conducted the research while earning his Ph.D. at The University of Texas at Austin's Jackson School of Geosciences. He collaborated with Zong-Liang Yang, a professor in the Jackson School's Department of Geological Sciences, and Jiangfeng Wei, a research scientist in the department.

The deserts of the Middle East are a large source of "mineral dust," small particles of sand that are brought into the atmosphere by wind and thermals. Once in the atmosphere, the dust can heat parts of the atmosphere by absorbing energy from sunlight.

The researchers found that mineral dust that originates in the Middle East can strengthen the Indian Summer Monsoon by heating the atmosphere above the Iranian Plateau and the Arabian Sea. But the dust's ability to absorb heat affected how much the dust influenced the monsoon. Dust that absorbed heat more efficiently was linked with increases in monsoon rainfall.

"The heating ability of dust aerosols largely determines how the monsoon responds to dust," Jin said.

The researchers examined the impact of mineral dust on monsoon strength by creating seven high-resolution computer simulations that varied the heat absorption of the mineral dust.

The Indian Summer Monsoon accounts for up to 80 percent of the annual rainfall in the Indian subcontinent. Increasing the strength of the monsoon can lead to flooding that can cause massive losses in life and crops. Jin said that for climate models to accurately capture monsoon behavior, they must account for the variability in mineral dust's heat absorption.

"This heating is represented in very different ways in different climate models, and is one of the factors responsible for inconsistency of climate model results," Jin said. "This study addresses the necessity for developing a new method to represent dust heating in climate models."

While this study focused on mineral dust's heat-absorption abilities, Jin said he is planning future research on how the dust particles can influence climate by changing cloud formation and behavior.

"Dust particles have been shown to be efficient ice nuclei, which may influence the monsoon by changing clouds' properties," Jin said.

Future research also needs to consider other dust processes, such as the surface erodibility of different dust source regions and how dust enters into the atmosphere, both of which have been studied by Yang and his other collaborators.

"Ultimately, this integrated research will improve our understanding of complex dust-monsoon interactions," Yang said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Texas at Austin
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Dirty to drinkable
St. Louis MO (SPX) Jul 28, 2016
Graphene oxide has been hailed as a veritable wonder material; when incorporated into nanocellulose foam, the lab-created substance is light, strong and flexible, conducting heat and electricity quickly and efficiently. Now, a team of engineers at Washington University in St. Louis has found a way to use graphene oxide sheets to transform dirty water into drinking water, and it could be a ... read more


WATER WORLD
Biological wizardry ferments carbon monoxide into biofuel

Can palm oil be sustainable

Scientists unlock 'green' energy from garden grass

Scientists harness CO2 to consolidate biofuel production process

WATER WORLD
Hey robot, shimmy like a centipede

Minimalist swimming microrobots

Artificial muscle for soft robotics: Low voltage, high hopes

China's Midea snares near-86 percent stake in Germany's Kuka

WATER WORLD
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

WATER WORLD
Tesla on Autopilot was speeding before fatal crash: probe

VW gets preliminary approval for US emissions settlement

China legalises ridesharing services

Peugeot-Citroen doubles net profit, eyes China growth

WATER WORLD
Newly discovered material property may lead to high temp superconductivity

Europe backing 'limitless' energy project in France

Researchers printed energy-producing photographs

New material could advance superconductivity

WATER WORLD
Indian Scientists Go Nuclear to Provide Pure Water to Thirsty Sub-Continent

India Continues to Push China to Support Its Nuclear Supply Group Bid

Rosatom Plans to Develop 3D Printing for Nuclear Industry

One of a Kind Nuclear Power Unit to be Connected to Electrical Grid

WATER WORLD
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

WATER WORLD
New model is first to predict tree growth in earliest stages of tree life

Effects of past tropical deforestation will be felt for years to come

Rainforest greener during 'dry' season

Trees' surprising role in the boreal water cycle quantified









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.