Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
More certainty on uncertainty's quantum mechanical role
by Staff Writers
Washington DC (SPX) Oct 08, 2012


University of Toronto quantum optics graduate students Dylan Mahler (l) and Lee Rozema (r) prepare pairs of entangled photons to study the disturbance the photons experience after they are measured. The pair are part of a team that demonstrated the degree of precision that can be achieved with weak-measurement techniques, causing a re-evaulation of Heisenberg's Uncertainty Principle. Credit: Dylan Mahler, University of Toronto.

Scientists who study the ultra-small world of atoms know it is impossible to make certain simultaneous measurements, for example finding out both the location and momentum of an electron, with an arbitrarily high level of precision. Because measurements disturb the system, increased certainty in the first measurement leads to increased uncertainty in the second.

The mathematics of this unintuitive concept - a hallmark of quantum mechanics - were first formulated by the famous physicist Werner Heisenberg at the beginning of the 20th century and became known as the Heisenberg Uncertainty Principle.

Heisenberg and other scientists later generalized the equations to capture an intrinsic uncertainty in the properties of quantum systems, regardless of measurements, but the uncertainty principle is sometimes still loosely applied to Heisenberg's original measurement-disturbance relationship. Now researchers from the University of Toronto have gathered the most direct experimental evidence that Heisenberg's original formulation is wrong.

The results were published online in the journal Physical Review Letters last month and the researchers will present their findings for the first time at the Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO), taking place in Rochester, N.Y.

The Toronto team set up an apparatus to measure the polarization of a pair of entangled photons. The different polarization states of a photon, like the location and momentum of an electron, are what are called complementary physical properties, meaning they are subject to the generalized Heisenberg uncertainty relationship.

The researchers' main goal was to quantify how much the act of measuring the polarization disturbed the photons, which they did by observing the light particles both before and after the measurement. However, if the "before shot" disturbed the system, the "after shot" would be tainted.

The researchers found a way around this quantum mechanical Catch-22 by using techniques from quantum measurement theory to sneak non-disruptive peeks of the photons before their polarization was measured.

"If you interact very weakly with your quantum particle, you won't disturb it very much," explained Lee Rozema, a Ph.D. candidate in quantum optics research at the University of Toronto, and lead author of the study. Weak interactions, however, can be like grainy photographs: they yield very little information about the particle.

"If you take just a single measurement, there will be a lot of noise in that measurement," said Rozema. "But if you repeat the measurement many, many times, you can build up statistics and can look at the average."

By comparing thousands of "before" and "after" views of the photons, the researchers revealed that their precise measurements disturbed the system much less than predicted by the original Heisenberg formula. The team's results provide the first direct experimental evidence that a new measurement-disturbance relationship, mathematically computed by physicist Masanao Ozawa, at Nagoya University in Japan, in 2003, is more accurate.

"Precision quantum measurement is becoming a very important topic, especially in fields like quantum cryptography where we rely on the fact that measurement disturbs the system in order to transmit information securely," said Rozema. "In essence, our experiment shows that we are able to make more precise measurements and give less disturbance than we had previously thought."

Presentation FW4J.4, "Direct Violation of Heisenberg's Precision Limit by Weak Measurements," takes place Wednesday, Oct. 17 at 2:30 p.m. EDT at the Rochester Riverside Convention Center in Rochester, N.Y.

.


Related Links
Optical Society of America
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
First images of Landau levels revealed
Warwick UK (SPX) Oct 04, 2012
Physicists have directly imaged Landau Levels - the quantum levels that determine electron behaviour in a strong magnetic field - for the first time since they were theoretically conceived of by Nobel prize winner Lev Landau in 1930. Using scanning tunnelling spectroscopy - a spatially resolved probe that interacts directly with the electrons - scientists at institutions including the Univ ... read more


TIME AND SPACE
Biorefining: The new green wave

Turd-eating worms clear air around Canadian toilets

Napiergrass: A Potential Biofuel Crop for the Sunny Southeast

Most biofuels are not green

TIME AND SPACE
Robot artist learns masters' brush strokes

Toyota unveils robot helping hand

Researchers Examine How Characteristics of Automated Voice Systems Affect Users' Experience

HF E Researchers Examine Older Adults' Willingness to Accept Help From Robots

TIME AND SPACE
Sandia Labs benchmark helps wind industry measure success

Bigger wind turbines make greener electricity

EU wind power capacity reaches 100GW

Lawsuit fights Obama ban on wind farm sale to Chinese

TIME AND SPACE
GM says China auto sales hit record in September

Plans to cut urban motorway through Bucharest stir outcry

How Will Smart Cars Affect the Future of Driving?

Study: Electric cars can be polluters

TIME AND SPACE
Using less gas and oil to get where you're going

Britain weighing tax breaks on shale gas: Osborne

Gunmen kill Chinese worker in northern Nigeria

IEA says Iraq oil output to more than double by 2020

TIME AND SPACE
S. Korea denies entry to Greenpeace activists

Japan forum to discuss nuclear-free energy future

Japan PM tours troubled Fukushima nuclear plant

Czechs nix French Areva bid on nuke plant

TIME AND SPACE
Regulator: Britain faces power shortages

Money: A New (Decentralized) Shade of Green

Energy New Front in Economic Warfare

Ireland Unlikely To Meet EU Energy Targets

TIME AND SPACE
Climate change cripples forests

Semi-dwarf trees may enable a green revolution for some forest crop

Rangers losing battle in Philippine forests

Indonesian palm oil company loses permit on illegal logging




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement