Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
More precision from less predictability: A new quantum trade-off
by Staff Writers
Brisbane, Australia (SPX) May 30, 2013


File image.

Researchers at Griffith University's Centre for Quantum Dynamics have demonstrated that, contrary to what the Heisenberg uncertainty relation may suggest, particle properties such as position and momentum can be measured simultaneously with high precision.

But it comes at a cost.

The findings have been published in Experimental Test of Universal Complementarity Relations in the prestigious journal Physical Review Letters.

Co-author Dr Michael Hall said the work represents an important advance in the quantitative understanding and experimental verification of complementarity; arguably the most important foundational principle of quantum mechanics.

"Quantum mechanics is often thought to imply that you can estimate precisely how fast an electron is moving, or exactly where it is, but not both at the same time," Dr Hall said.

"The argument is that properties such as speed and position require physically incompatible or 'complementary' devices for their precise measurement and therefore, any device used to make a simultaneous measurement will give inherently imprecise estimates," he said.

"This argument was challenged by Einstein in 1935, who gave an example where the position and speed could be measured accurately at the same time, by exploiting quantum correlations with a second particle."

Professor Geoff Pryde, co-author and leader of the experimental team, said it is important to note that this is not in direct conflict with the well-known Heisenberg uncertainty relation, which requires only that the position and speed cannot both be predicted accurately beforehand, but it does leave open the important question of whether any quantum restrictions apply to simultaneous measurements.

"We have verified experimentally that Einstein was correct by using polarisation properties of photons rather than position and speed," Professor Pryde said.

"But we have also shown that a high degree of joint precision does not come for free; it is possible only if the measurement outcomes are sufficiently unpredictable, as quantified by a new generalisation of the Heisenberg uncertainty relation.

"As the uncertainty principle underlies many aspects of quantum information technology, ranging from entanglement verification to random number generation to the security of quantum cryptography, our work could have implications in all these areas."

.


Related Links
Griffith University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Coupled particles cross energy wall
Heidelberg, Germany (SPX) May 30, 2013
For the first time, a new kind of so-called Klein tunnelling-representing the quantum equivalent of crossing an energy wall- has been presented in a model of two interacting particles. This work by Stefano Longhi and Giuseppe Della Valle from the Institute of Photonics and Nanotechnology in Milan, Italy, is about to be published in EPJ B. Klein tunnelling is a quantum phenomenon referring ... read more


TIME AND SPACE
Colorado's new alga may be a source of biofuel production

European and US Cellulase Patents granted to Direvo Industrial Biotechnology

Shanghai sees biofuel gold in recycled cooking oil

Georgia Power adds biomass capacity

TIME AND SPACE
Principles of locomotion in confined spaces could help robot teams work underground

Robots learn to take a proper handoff by following digitized human examples

Wayne State University researcher's technique helps robotic vehicles find their way, help humans

MakerBot and Robohand

TIME AND SPACE
Cold climate wind energy showing huge potential

Poland, Finland seek cleaner Baltic, renewable energy investments

Britain to back EU emissions quotas, oppose renewables targets

SC Electric Awarded to Upgrade 585 MW Wind Farm in Texas

TIME AND SPACE
Monitoring system can detect dangerous fatigue in mine truck driver

Electric cars slow to gain traction in Germany

Space drives e-mobility

Better Place electric car firm to be dissolved

TIME AND SPACE
Romanian PM rejects 'influence' of anti-shale gas campaigns

Japan, Russia to jointly develop oilfield

Iran aims for more oil exports to India

Stanford scientists develop high-efficiency zinc-air battery

TIME AND SPACE
Despite safety and other concerns, nuclear power saves lives, greenhouse gas emissions

S. Korea halts two more reactors over faulty parts

UAE begins construction of second nuclear reactor

Areva vows to stay in Niger despite uranium mine attack

TIME AND SPACE
EU emitted 3.3% less greenhouse gas in 2011: report

Energy - Balancing the Bonanza: Interview with Mark Thoma

Most Energy Execs Indicate Potential For US Energy Independence By 2030

Renewables the light at the end of the power price tunnel

TIME AND SPACE
Study explores 100 year increase in forestry diseases

Drought makes Borneo's trees flower at the same time

Reforestation study shows trade-offs between water, carbon and timber

Amazon River exhales virtually all carbon taken up by rain forest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement