Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Movement of pyrrole molecules defy 'classical' physics
by Staff Writers
Cambridge UK (SPX) Apr 29, 2013


In classical physics, an object losing energy can continue to do so until it can be thought of as sitting perfectly still. In the quantum world, this is never the case: everything always retains some form of residual - even undetectable - energy, known as 'zero-point energy'.

New research shows that movement of the ring-like molecule pyrrole over a metal surface runs counter to the centuries-old laws of 'classical' physics that govern our everyday world.

Using uniquely sensitive experimental techniques, scientists have found that laws of quantum physics - believed primarily to influence at only sub-atomic levels - can actually impact on a molecular level.

Researchers at Cambridge's Chemistry Department and Cavendish Laboratory say they have evidence that, in the case of pyrrole, quantum laws affecting the internal motions of the molecule change the "very nature of the energy landscape" - making this 'quantum motion' essential to understanding the distribution of the whole molecule.

The study, a collaboration between scientists from Cambridge and Rutgers universities, appeared in the German chemistry journal Angewandte Chemie earlier this month.

A pyrrole molecule's centre consists of a "flat pentagram" of five atoms, four carbon and one nitrogen. Each of these atoms has an additional hydrogen atom attached, sticking out like spokes.

Following experiments performed by Barbara Lechner at the Cavendish Laboratory to determine the energy required for movement of pyrrole across a copper surface, the team discovered a discrepancy that led them down a 'quantum' road to an unusual discovery.

In previous work on simpler molecules, the scientists were able to accurately calculate the 'activation barrier' - the energy required to loosen a molecule's bond to a surface, allowing movement - using 'density functional theory', a method that treats the electrons which bind the atoms according to quantum mechanics but, crucially, deals with atomic nuclei using a 'classical' physics approach.

Surprisingly, with pyrrole the predicted 'activation barriers' were way out, with calculations "less than a third of the measured value". After much head scratching, puzzled scientists turned to a purely quantum phenomenon called 'zero-point energy'.

In classical physics, an object losing energy can continue to do so until it can be thought of as sitting perfectly still. In the quantum world, this is never the case: everything always retains some form of residual - even undetectable - energy, known as 'zero-point energy'.

While 'zero-point energy' is well known to be associated with motion of the atoms contained in molecules, it was previously believed that such tiny amounts of energy simply don't affect the molecule as a whole to any measurable extent, unless the molecule broke apart.

But now, the researchers have discovered that the "quantum nature" of the molecule's internal motion actually does affect the molecule as a whole as it moves across the surface, defying the 'classical' laws that it's simply too big to feel quantum effects.

'Zero-point energy' moving within a pyrrole molecule is unexpectedly sensitive to the exact site occupied by the molecule on the surface. In moving from one site to another, the 'activation energy' must include a sizeable contribution due to the change in the quantum 'zero-point energy'.

Scientists believe the effect is particularly noticeable in the case of pyrrole because the 'activation energy' needed for diffusion is particularly small, but that many other similar molecules ought to show the same kind of behavior.

"Understanding the nature of molecular diffusion on metal surfaces is of great current interest, due to efforts to manufacture two-dimensional networks of ring-like molecules for use in optical, electronic or spintronic devices," said Dr Stephen Jenkins, who heads up the Surface Science Group in Cambridge's Department of Chemistry.

"The balance between the activation energy and the energy barrier that sticks the molecules to the surface is critical in determining which networks are able to form under different conditions."

.


Related Links
University of Cambridge
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
LHCb Experiment Observes New Matter-Antimatter Difference
Geneva, Switzerland (SPX) Apr 25, 2013
The LHCb collaboration at CERN has submitted a paper to Physical Review Letters on the first observation of matter-antimatter asymmetry in the decays of the particle known as the B0s . It is only the fourth sub-atomic particle known to exhibit such behavior. Matter and antimatter are thought to have existed in equal amounts at the beginning of the universe, but today the universe appears t ... read more


TIME AND SPACE
Recipe for Low-Cost, Biomass-Derived Catalyst for Hydrogen Production

China conducts its first successful bio-fueled airline flight

Bugs produce diesel on demand

New input system for biogas systems

TIME AND SPACE
Rights group launches campaign to ban 'killer robots'

Piezoelectric 'taxel' arrays convert motion to electronic signals for tactile imaging

The SPHERES Have Eyes

Humans feel empathy for robots

TIME AND SPACE
U.S. leads in wind installations

Providing Capital and Technology, GE is Farming the Wind in America's Heartland with Enel Green Power

Wind skeptic British minister replaced

Using fluctuating wind power

TIME AND SPACE
Honda's annual net profit soars to $3.7 bn

Chinese prefer gas-guzzling vehicles?

Auto makers show off vehicles in key China market

GM by any other name? Car firms face brand puzzle in China

TIME AND SPACE
New Battery Design Could Help Solar and Wind Energy Power the Grid

NASA to foot the bill for U.S. production of nuclear spacecraft fuel

China, India spar over Persian Gulf oil

Permit delays raise US-Canada pipeline costs: company

TIME AND SPACE
Turkey to finalise nuclear plant deal: minister

Fukushima firm TEPCO suffers $7.0 bn annual loss

S. Korea, US extend nuclear pact

Czech CEZ wants better bids for nuclear plant

TIME AND SPACE
Ethiopia and China sign $1 billion power deal

New York approves power line from Canada

$674 billion annual spend on 'unburnable' fossil fuel assets signals failure to recognise huge financial risks

Germany energy transition faces cuts after European Parliament vote

TIME AND SPACE
Study Led by NUS Scientists Reveals Escalating Cost of Forest Conservation

Wildfires can burn hot without ruining soil

Indonesia moves towards approving deforestation plan

Brazil urged to stop invading indigenous lands




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement