Solar Energy News  
SOLAR DAILY
Multi-institutional team extracts more energy from sunlight with advanced solar panels
by Staff Writers
Champaign IL (SPX) Oct 07, 2020

A schematic showing the layered structure of a tandem solar panel.

Researchers working to maximize solar panel efficiency said layering advanced materials atop traditional silicon is a promising path to eke more energy out of sunlight. A new study shows that by using a precisely controlled fabrication process, researchers can produce multilayered solar panels with the potential to be 1.5 times more efficient than traditional silicon panels.

The results of the study led by University of Illinois Urbana-Champaign engineer Minjoo Larry Lee are published in the journal Cell Reports Physical Sciences.

"Silicon solar panels are prevalent because they are affordable and can convert a little over 20% of the sun's light into usable electricity," said Lee, a professor of electrical and computer engineering and Holonyak Micro and Nanotechnology Lab affiliate.

"However, just like silicon computer chips, silicon solar cells are reaching the limit of their abilities, so finding a way to increase efficiency is attractive to energy providers and consumers."

Lee's team has been working to layer the semiconductor material gallium arsenide phosphide onto silicon because the two materials complement each other. Both materials absorb visible light strongly, but gallium arsenide phosphide does so while generating less waste heat. In contrast, silicon excels at converting energy from the infrared part of the solar spectrum just beyond what our eyes can see, Lee said.

"It is like a sports team. You are going to have some fast people, some who are strong and some with great defensive skills," he said. "In a similar way, tandem solar cells work as a team and take advantage of the best properties of both materials to make a single, more efficient device."

While gallium arsenide phosphide and other semiconductor materials like it are efficient and stable, they are expensive, so making panels composed entirely from them is not reasonable for mass production at this time. Hence, Lee's team uses low-cost silicon as a starting point for its research.

During fabrication, material defects find their way into the layers, particularly at interfaces between the silicon and gallium arsenide phosphide, Lee said. Tiny imperfections form whenever materials with different atomic structure are layered onto silicon, compromising both performance and reliability.

"Anytime you switch from one material to another, there is always a risk of creating some disorder in the transition," Lee said. "Shizhao Fan, the lead author of the study, developed a process for forming pristine interfaces in the gallium arsenide phosphide cell, which led to a vast improvement over our earlier work in this area."

"Eventually, a utility company could use this technology to get 1.5 times more energy out of the same amount of land on its solar farms, or a consumer could use 1.5 times less space for rooftop panels," he said.

Lee said obstacles remain on the path to commercialization, but he is hopeful that energy providers and consumers will see the value in using stable materials to achieve a performance boost.

Research Report: "Current-matched III-V/Si epitaxial tandem solar cells with 25.0% efficiency"


Related Links
University Of Illinois At Urbana-Champaign
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Chemical innovation stabilizes best-performing perovskite formulation
Lausanne, Switzerland (SPX) Oct 05, 2020
Perovskites are a class of materials made up of organic materials bound to a metal. Their fascinating structure and properties have propelled perovskites into the forefront of materials' research, where they are studied for use in a wide range of applications. Metal-halide perovskites are especially popular, and are being considered for use in solar cells, LED lights, lasers, and photodetectors. For example, the power-conversion efficiency of perovskite solar cells (PSCs) have increased from 3.8% ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Inducing plasma in biomass could make biogas easier to produce

Novel photocatalysts can perform solar-driven conversion of CO2 into fuel

Cascades with carbon dioxide

Chemistry's Feng Lin Lab is splitting water molecules for a renewable energy future

SOLAR DAILY
First tests for landing the Martian Moons eXploration Rover

Teams demonstrate swarm tactics in fourth major OFFSET Field Experiment

Technology developed for Lunar landings makes self-driving cars safer on Earth

Light processing improves robotic sensing, study finds

SOLAR DAILY
California offshore winds show promise as power source

Offshore wind power now so cheap it could pay money back to consumers

Trust me if you can

SOLAR DAILY
Investors load $500 mn into Uber's trucking business

Electric truck startup Nikola postpones December event

VW 'dieselgate' fraud: Timeline of a scandal

European carmakers' leather use fuelling deforestation: NGO

SOLAR DAILY
KIST develops ambient vibration energy harvester with automatic resonance tuning mechanism

Scientists present a comprehensive physics basis for a new fusion reactor design

MIT physicists inch closer to zero-emissions power source

Promising computer simulations for stellarator plasmas

SOLAR DAILY
Filtering radioactive elements from water

Framatome joins with academia and industry partners to develop nuclear reactor digital twins

Russia's giant nuclear-powered icebreaker makes maiden voyage

EU court approves UK state aid for nuclear plant

SOLAR DAILY
Canada spends on infrastructure to boost jobs, cut CO2 emissions

Deloitte scraps report on climate change benefit for GDP

'Big Four' accounting firm sees upside to climate change

Big promises, but can China be carbon neutral by 2060

SOLAR DAILY
Brazil court blocks move to repeal mangrove protections

Brazil's Bolsonaro hits back at Biden over rainforest

Pine needles evolved to help trees cope with rainfall

Brazil rejects deforestation concerns; Victim of 'brutal disinformation' says Bolsonaro









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.