Solar Energy News  
STELLAR CHEMISTRY
Mysterious cosmic explosion surprises astronomers studying the distant x-ray universe
by Staff Writers
University Park PA (SPX) Mar 31, 2017


X-ray image of the Chandra Deep Field-South, the region of the sky where the flaring X-ray source was discovered. This is the deepest X-ray image ever created, made with about 7 million seconds of observing time with NASA's Chandra X-ray Observatory. The location of the flaring source, named 'CDF-S XT1,' is marked with the white arrow. The series of small images along the bottom show the variability of the flaring X-ray source over time (with time increasing from left to right, spanning a period of a few hours). Image courtesy NASA/CXC/F. Bauer et al.

A mysterious flash of X-rays has been discovered by NASA's Chandra X-ray Observatory in the deepest X-ray image ever obtained. This source likely comes from some sort of destructive event, but it may be of a variety that scientists have never seen before.

The X-ray source was originally discovered in October 2014 by Bin Luo, a Penn State postdoctoral researcher; Niel Brandt, the Verne M. Willaman Professor of Astronomy and Astrophysics and professor of physics at Penn State; and Franz Bauer, an associate professor of astrophysics at the Pontifical Catholic University of Chile in Santiago, Chile. Luo has since moved from Brandt's group to become a professor of astronomy and space science at Nanjing University in China, and Bauer had been a postdoctoral researcher in Brandt's group from 2000 to 2003. The data were gathered using the Advanced CCD Imaging Spectrometer on Chandra, an instrument conceived and designed by a team led by Penn State Evan Pugh Professor Emeritus of Astronomy and Astrophysics Gordon Garmire.

"This flaring source was a wonderful surprise bonus that we accidentally discovered in our efforts to explore the poorly understood realm of the ultra-faint X-ray universe," said Brandt. "We definitely `lucked out' with this find and now have an exciting new transient phenomenon to explore in future years."

Located in a region of the sky known as the Chandra Deep Field-South (CDF-S), the X-ray source has remarkable properties. Prior to October 2014, this source was not detected in X-rays, but then it erupted and became at least a factor of 1,000 brighter in a few hours. After about a day, the source had faded completely below the sensitivity of Chandra.

Thousands of hours of legacy data from the Hubble and Spitzer Space Telescopes helped determine that the event came from a faint, small galaxy about 10.7 billion light years from Earth. For a few minutes, the X-ray source produced a thousand times more energy than all the stars in this galaxy.

"Ever since discovering this source, we've been struggling to understand its origin," said Bauer. "It's like we have a jigsaw puzzle but we don't have all of the pieces."

Two of the three main possibilities to explain the X-ray source invoke gamma-ray burst (GRB) events. GRBs are jetted explosions triggered either by the collapse of a massive star or by the merger of a neutron star with another neutron star or a black hole. If the jet is pointing towards the Earth, a burst of gamma-rays is detected. As the jet expands, it loses energy and produces weaker, more isotropic radiation at X-ray and other wavelengths.

Possible explanations for the CDF-S X-ray source, according to the researchers, are a GRB that is not pointed toward Earth, or a GRB that lies beyond the small galaxy. A third possibility is that a medium-sized black hole shredded a white dwarf star.

"None of these ideas fits the data perfectly," said co-author Ezequiel Treister, also of the Pontifical Catholic University, "but then again, we've rarely if ever seen any of the proposed possibilities in actual data, so we don't understand them well at all."

The mysterious X-ray source was not seen during the two-and-a-half months of exposure time Chandra has observed the CDF-S region, which has been spread out over the past 17 years. Moreover, no similar events have yet to be found in Chandra observations of other parts of the sky.

This X-ray source in the CDF-S has different properties from the as yet unexplained variable X-ray sources discovered in the elliptical galaxies NGC 5128 and NGC 4636 by Jimmy Irwin of the University of Alabama and collaboratorsUniversity of Alabama and collaborators. In particular, the CDF-S source is likely associated with the complete destruction of a neutron star or white dwarf, and is roughly 100,000 times more luminous in X-rays. It is also located in a much smaller and younger host galaxy, and is only detected during a single, several-hour burst.

"We may have observed a completely new type of cataclysmic event," said co-author Kevin Schawinski, of ETH Zurich in Switzerland. "Whatever it is, a lot more observations are needed to work out what we're seeing."

Additional highly targeted searches through the Chandra archive and those of ESA's XMM-Newton and NASA's Swift satellite may uncover more examples of this type of variable object that have until now gone unnoticed. Future X-ray observations by Chandra and other X-ray observatories such as the planned Chinese Einstein Probe also may reveal the same phenomenon from other objects.

If the X-ray source was caused by a GRB triggered by the merger of neutron star with a black hole or another neutron star, then gravitational waves would also have been produced. . If such an event were to occur closer to Earth, it may be detectable with the Laser Interferometer Gravitational-Wave Observatory (LIGO).

In addition to Brandt, Luo, and Bauer, the research team includes current Penn State scientists Donald Schneider, Department Head and Distinguished Professor of Astronomy and Astrophysics and Guang Yang, a Penn State graduate student; and former Penn State scientists Dave Alexander, professor of astronomy at Durham University in the U.K.; Ohad Shemmer, associate professor of physics at the University of North Texas; Cristian Vignali, associate professor of physics and astronomy at the University of Bologna in Italy; and Yongquan Xue, professor of astronomy at the University of Science and Technology of China.

Research paper

STELLAR CHEMISTRY
Speeding star gives new clues to breakup of multi-star system
University Park PA (SPX) Mar 31, 2017
A remarkable new discovery using NASA's Hubble Space Telescope reveals three stars that now hold the record as the youngest-known examples of a super-fast-flying breed. "Until these observations, only a few - but older - examples of such rapidly-moving stars had been found with origins traceable back to the volatile systems that likely ejected them," said lead researcher Kevin Luhman of Penn Sta ... read more

Related Links
Penn State
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Ridding the oceans of plastics by turning the waste into valuable fuel

Shell unveils giant new high-tech research lab in India

Hydrogen production: This is how green algae assemble their enzymes

Community in chaotic Jakarta goes green to fight eviction

STELLAR CHEMISTRY
NASA Robotic Refueling Mission Departs Station

NASA Tests Robotic Ice Tools for Use on Ocean Worlds

Robot epigenetics: Adding complexity to embodied robot evolution

Electronic synapses that can learn: towards an artificial brain?

STELLAR CHEMISTRY
U.N. says low-carbon economy not a "pipe dream"

Mega-wind farm offshore Denmark clears hurdle

Japan scientist eyes energy burst from 'typhoon turbine'

North Carolina offshore wind hailed as job creator

STELLAR CHEMISTRY
NASA Kennedy Partners to Help Develop Self-driving Cars

Ford boosts research in Canada for connected cars

Tesla tops quarterly sales forecast

VW reaches $157 mn diesel settlement with 10 US states

STELLAR CHEMISTRY
How does oxygen get into a fuel cell

Clarifying how lithium ions ferry around in rechargeable batteries

Building a market for renewable thermal technologies

New gel-like coating beefs up the performance of lithium-sulfur batteries

STELLAR CHEMISTRY
Toshiba to buy Engie's stake in NuGen for $139 mn

Toshiba execs under fire as loss forecast balloons

Westinghouse's woes spotlight US nuclear sector's decline

Toshiba's US nuclear unit files for bankruptcy protection

STELLAR CHEMISTRY
World Bank urges more investment for developing global electricity

US states begin legal action on Trump energy delay

Program to be axed saves energy in LA buildings

Energy demand metrics indicate strong U.S. economy

STELLAR CHEMISTRY
Emissions from the edge of the forest

Methane emissions from trees

Forests fight global warming in many ways

Asian dust providing key nutrients for California's giant sequoias









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.