Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
Mysterious quasar sequence explained
by Staff Writers
Pasadena, CA (SPX) Sep 12, 2014


New work solves a quasar mystery that astronomers have been puzzling over for 20 years. It shows that most observed quasar phenomena can be unified with two simple quantities: one that describes how efficiently the hole is being fed, and the other that reflects the viewing orientation of the astronomer. This graph shows the distribution of about 20,000 luminous Sloan Digital Sky Survey quasars in the two-dimensional space of broad line width versus FeII strength, color-coded by the strength of the narrow [OIII] line emission. The strong horizontal trend is the main sequence of quasars driven by the efficiency of the black hole accretion, while the vertical spread of broad line width is largely due to our viewing angle to the inner region of the quasar. Image courtesy Yue Shen. For a larger versionh of this image please go here.

Quasars are supermassive black holes that live at the center of distant massive galaxies. They shine as the most luminous beacons in the sky across the entire electromagnetic spectrum by rapidly accreting matter into their gravitationally inescapable centers. New work from Carnegie's Hubble Fellow Yue Shen and Luis Ho of the Kavli Institute for Astronomy and Astrophysics (KIAA) at Peking University solves a quasar mystery that astronomers have been puzzling over for 20 years.

Their work, published in the September 11 issue of Nature, shows that most observed quasar phenomena can be unified with two simple quantities: one that describes how efficiently the hole is being fed, and the other that reflects the viewing orientation of the astronomer.

Quasars display a broad range of outward appearances when viewed by astronomers, reflecting the diversity in the conditions of the regions close to their centers. But despite this variety, quasars have a surprising amount of regularity in their quantifiable physical properties, which follow well-defined trends (referred to as the "main sequence" of quasars) discovered more than 20 years ago. Shen and Ho solved a two-decade puzzle in quasar research: What unifies these properties into this main sequence?

Using the largest and most-homogeneous sample to date of over 20,000 quasars from the Sloan Digital Sky Survey, combined with several novel statistical tests, Shen and Ho were able to demonstrate that one particular property related to the accretion of the hole, called the Eddington ratio, is the driving force behind the so-called main sequence.

The Eddington ratio describes the efficiency of matter fueling the black hole, the competition between the gravitational force pulling matter inward and the luminosity driving radiation outward. This push and pull between gravity and luminosity has long been suspected to be the primary driver behind the so-called main sequence, and their work at long last confirms this hypothesis.

Of additional importance, they found that the orientation of an astronomer's line-of-sight when looking down into the black hole's inner region plays a significant role in the observation of the fast-moving gas innermost to the hole, which produces the broad emission lines in quasar spectra.

This changes scientists' understanding of the geometry of the line-emitting region closest to the black hole, a place called the broad-line region: the gas is distributed in a flattened, pancake-like configuration. Going forward, this will help astronomers improve their measurements of black hole masses for quasars.

"Our findings have profound implications for quasar research. This simple unification scheme presents a pathway to better understand how supermassive black holes accrete matter and interplay with their environments," Shen said.

"And better black hole mass measurements will benefit a variety of applications in understanding the cosmic growth of supermassive black holes and their place in galaxy formation," Ho added.

.


Related Links
Carnegie Institution
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
NASA's RXTE Satellite Decodes the Rhythm of an Unusual Black Hole
Washington DC (SPX) Aug 19, 2014
Astronomers have uncovered rhythmic pulsations from a rare type of black hole 12 million light-years away by sifting through archival data from NASA's Rossi X-ray Timing Explorer (RXTE) satellite. The signals have helped astronomers identify an unusual midsize black hole called M82 X-1, which is the brightest X-ray source in a galaxy known as Messier 82. Most black holes formed by dying st ... read more


TIME AND SPACE
3D imaging may improve understanding of biofuel plant materials

Ethanol fireplaces: the underestimated risk

ACCESS II Confirms Jet Biofuel Burns Cleaner

Scientists create renewable fossil fuel alternative using bacteria

TIME AND SPACE
Cutting the cord on soft robots

iRobot supplying its PackBots to Canada

Watch MIT's Atlas robot carry heavy objects

DARPA issues RFI for robotic space services for satellites

TIME AND SPACE
Wind Turbines Outperforming Expectations at Honda Transmission Plant

Stealth wind turbines to become operational in France in 2015

EU calls for study of 2020 renewable energy targets

Go green and prosper, British government says

TIME AND SPACE
Electric supercar race ends in a serious crash

China fines Volkswagen affiliate $40.5 mn for price-fixing

Toshiba Provides Rapid Recharge SCiBT Batteries for Proterra Bus Fleet

Moscow Plans to Install 150 Electric Vehicle Charging Stations

TIME AND SPACE
Phosphorus a promising semiconductor

Researchers Part Water

NREL Updates Cetane Data Energy Efficient Fuel and Engine Development

Light detector to revolutionise night vision technology

TIME AND SPACE
Japan newspaper apologises for false Fukushima report

Westinghouse Signs Agreements with China's SNPAS

Japan nuclear watchdog backs restart of two reactors

Japan's first female industry chief visits Fukushima plant

TIME AND SPACE
IRENA: Outdated thinking curbing green energy momentum

Zimbabwe launches $500-mln power units to ease energy woes

Existing power plants will spew 300 billion more tons of carbon dioxide during use

Yale Journal Explores Advances In Sustainable Manufacturing

TIME AND SPACE
Brazil builds giant tower in Amazon to monitor climate

Climate change could 'fundamentally alter' US forests

Amazon deforestation up 29 pc in 2013 -- Brazil

New NASA Probe Will Study Earth's Forests in 3-D




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.