Solar Energy News  
EXO WORLDS
NASA Helps Decipher How Some Distant Planets Have Clouds of Sand
by Staff Writers
Pasadena CA (JPL) Jul 11, 2022

Brown dwarfs - celestial objects that fall between stars and planet.

A new study using archival observations by the now-retired Spitzer Space Telescope found a common trait among distant worlds where the exotic clouds form.

Most clouds on Earth are made of water, but beyond our planet they come in many chemical varieties. The top of Jupiter's atmosphere, for example, is blanketed in yellow-hued clouds made of ammonia and ammonium hydrosulfide. And on worlds outside our solar system, there are clouds composed of silicates, the family of rock-forming minerals that make up over 90% of Earth's crust. But researchers haven't been able to observe the conditions under which these clouds of small dust grains form.

A new study appearing in the Monthly Notices of the Royal Astronomical Society provides some insight: The research reveals the temperature range at which silicate clouds can form and are visible at the top of a distant planet's atmosphere. The finding was derived from observations by NASA's retired Spitzer Space Telescope of brown dwarfs - celestial bodies that fall in between planets and stars - but it fits into a more general understanding of how planetary atmospheres work.

"Understanding the atmospheres of brown dwarfs and planets where silicate clouds can form can also help us understand what we would see in the atmosphere of a planet that's closer in size and temperature to Earth," said Stanimir Metchev, a professor of exoplanet studies at Western University in London, Ontario, and co-author of the study.

Cloudy Chemistry
The steps to make any type of cloud are the same. First, heat the key ingredient until it becomes a vapor. Under the right conditions, that ingredient could be a variety of things, including water, ammonia, salt, or sulfur. Trap it, cool it just enough for it to condense, and voila - clouds! Of course, rock vaporizes at a much higher temperature than water, so silicate clouds are visible only on hot worlds, such as the brown dwarfs used for this study and some planets outside our solar system.

Although they form like stars, brown dwarfs aren't massive enough to kick-start fusion, the process that causes stars to shine. Many brown dwarfs have atmospheres almost indistinguishable from those of gas-dominated planets, such as Jupiter, so they can be used as a proxy for those planets.

Before this study, data from Spitzer already suggested the presence of silicate clouds in a handful of brown dwarf atmospheres. (NASA's James Webb Space Telescope will be able to confirm these types of clouds on distant worlds.) This work was done during the first six years of the Spitzer mission (which launched in 2003), when the telescope was operating three cryogenically cooled instruments. In many cases, though, the evidence of silicate clouds on brown dwarfs observed by Spitzer was too weak to stand on its own.

For this latest research, astronomers gathered more than 100 of those marginal detections and grouped them by the temperature of the brown dwarf. All of them fell within the predicted temperature range for where silicate clouds should form: between about 1,900 degrees Fahrenheit (about 1,000 degrees Celsius) and 3,100 F (1,700 C). While the individual detections are marginal, together they reveal a definitive trait of silicate clouds.

"We had to dig through the Spitzer data to find these brown dwarfs where there was some indication of silicate clouds, and we really didn't know what we would find," said Genaro Suarez, a postdoctoral researcher at Western University and lead author of the new study. "We were very surprised at how strong the conclusion was once we had the right data to analyze."

In atmospheres hotter than the top end of the range identified in the study, silicates remain a vapor. Below the bottom end, the clouds will turn into rain or sink lower in the atmosphere, where the temperature is higher.

In fact, researchers think that silicate clouds exist deep in Jupiter's atmosphere, where the temperature is much higher than it is at the top, owing to atmospheric pressure. The silicate clouds can't rise higher, because at lower temperatures the silicates will solidify and won't remain in cloud form. If the top of the atmosphere were thousands of degrees hotter, the planet's ammonia and ammonium hydrosulfide clouds would vaporize and the silicate clouds could potentially rise to the top.

Scientists are finding an increasingly varied menagerie of planetary environments in our galaxy. For example, they have found planets with one side permanently facing their star and the other permanently in shadow - a planet where clouds of different compositions might be visible, depending on the side observed. To understand those worlds, astronomers will first need to understand the common mechanisms that shape them.


Related Links
Spitzer at NASA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
AI experts called on to join the hunt for exoplanets
London, UK (SPX) Jul 01, 2022
Artificial Intelligence (AI) experts have been challenged to help a new space mission to investigate Earth's place in the universe. The Ariel Data Challenge 2022, which launches on 30 June, is inviting AI and machine learning experts from industry and academia to help astronomers understand planets outside our solar system, known as exoplanets. Dr Ingo Waldmann, Associate Professor in Astrophysics, UCL (University College London) and Ariel Data Challenge lead said: "AI has revolutionis ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Study points to Armenian origins of ancient crop with aviation biofuel potential

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

Technologies boost potential for carbon dioxide conversion to useful products

An unusual triangular molecule that makes jet fuel

EXO WORLDS
Shapeshifting microrobots can brush and floss teeth

Rover plus astronaut complete Mount Etna challenge

Building explainability into the components of machine-learning models

Velodyne Lidar signs multi-year agreement with Boston Dynamics

EXO WORLDS
Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

Engineers develop cybersecurity tools to protect solar, wind power on the grid

1500 sensors for the rotor blades of the future

EXO WORLDS
Smart cars are on the radar: Automatic object recognition and tracking using lidar

New traffic device leaves Hong Kong pedestrians red in the face

Tesla deliveries fall with temporary closure of China factory

Range extenders: solar panels provide more juice to EVs

EXO WORLDS
Volkswagen takes on US, China rivals with battery factory

HKUST develops world's most durable hydrogen fuel cell

Sieving carbons: Ideal anodes for high-energy sodium-ion batteries

Ultra-thin, high-efficient piezoelectric element generate electricity from daily life movement

EXO WORLDS
Better estimating the risk of coastal flooding for nuclear power plants

EU Parliament backs green label for gas, nuclear

Framatome selected to provide full system decontamination at Bruce Power Units 3 and 4

Sweden's Vattenfall eyes small nuclear reactors

EXO WORLDS
ECB urges banks to 'step up' climate risk management

Global effort to police 'greenwashing' begins to take shape

Divided MEPs to vote over EU green label for gas, nuclear

ECB unveils plan to push climate-friendly investments

EXO WORLDS
Niger activists call for wood-free Eid barbecues to save trees

Fourth arrest in Amazon murders of journalist, guide: police

The Gambia bans timber exports after smuggling fears

Brazil sets new six-month Amazon deforestation record









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.