Subscribe free to our newsletters via your
. Solar Energy News .




MICROSAT BLITZ
NASA Prepares for First Interplanetary CubeSats
by Staff Writers
Pasadena CA (JPL) Jun 16, 2015


Engineers for NASA's MarCO Project display a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the JPL team preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch. Image courtesy NASA/JPL-Caltech. For a larger version of this image please go here.

When NASA launches its next mission on the journey to Mars - a stationary lander in 2016 - the flight will include two CubeSats. This will be the first time CubeSats have flown in deep space. If this flyby demonstration is successful, the technology will provide NASA the ability to quickly transmit status information about the main spacecraft after it lands on Mars.

The twin communications-relay CubeSats, being built by NASA's Jet Propulsion Laboratory, Pasadena, California, constitute a technology demonstration called Mars Cube One (MarCO). CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft.

The basic CubeSat unit is a box roughly 4 inches (10 centimeters) square. Larger CubeSats are multiples of that unit. MarCO's design is a six-unit CubeSat - about the size of a briefcase -- with a stowed size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters).

MarCO will launch in March 2016 from Vandenberg Air Force Base, California, on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander. InSight is NASA's first mission devoted to understanding the interior structure of the Red Planet. MarCO will fly by Mars while InSight is landing, in September 2016.

"MarCO is an experimental capability that has been added to the InSight mission, but is not needed for mission success," said Jim Green, director of NASA's planetary science division at the agency's headquarters in Washington. "MarCO will fly independently to Mars."

During InSight's entry, descent and landing (EDL) operations on Sept. 28, 2016, the lander will transmit information in the UHF radio band to NASA's Mars Reconnaissance Orbiter (MRO) flying overhead. MRO will forward EDL information to Earth using a radio frequency in the X band, but cannot simultaneously receive information over one band while transmitting on another. Confirmation of a successful landing could be received by the orbiter more than an hour before it's relayed to Earth.

MarCO's softball-size radio provides both UHF (receive only) and X-band (receive and transmit) functions capable of immediately relaying information received over UHF.

The two CubeSats will separate from the Atlas V booster after launch and travel along their own trajectories to the Red Planet. After release from the launch vehicle, MarCO's first challenges are to deploy two radio antennas and two solar panels. The high-gain, X-band antenna is a flat panel engineered to direct radio waves the way a parabolic dish antenna does. MarCO will be navigated to Mars independently of the InSight spacecraft, with its own course adjustments on the way.

Ultimately, if the MarCO demonstration mission succeeds, it could allow for a "bring-your-own" communications relay option for use by future Mars missions in the critical few minutes between Martian atmospheric entry and touchdown.

By verifying CubeSats are a viable technology for interplanetary missions, and feasible on a short development timeline, this technology demonstration could lead to many other applications to explore and study our solar system.

JPL, a division of the California Institute of Technology in Pasadena, manages MarCO, InSight and MRO for NASA's Science Mission Directorate in Washington. Technology suppliers for MarCO include: Blue Canyon Technologies of Boulder, Colorado, for the attitude-control system; VACCO Industries of South El Monte, California, for the propulsion system; AstroDev of Ann Arbor, Michigan, for electronics; MMA Design LLC, also of Boulder, for solar arrays; and Tyvak Nano-Satellite Systems Inc., a Terran Orbital Company in San Luis Obispo, California, for the CubeSat dispenser system.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
MarCO
InSight
Microsat News and Nanosat News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








MICROSAT BLITZ
Goddard Technologist Advances CubeSat Concept for Planetary Exploration
Greenbelt MD (SPX) May 22, 2015
Although scientists are increasingly using pint-size satellites sometimes no larger than a loaf of bread to gather data from low-Earth orbit, they have yet to apply the less-expensive small-satellite technology to observe physical phenomena far from terra firma. Jaime Esper, a technologist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, however, is advancing a CubeSat concept ... read more


MICROSAT BLITZ
Leaving on a biofueled jet plane

Land management practices to become important as biofuels use grows

Scientists create eco-friendly jet fuel from sugarcane

Dutch 'paddy power' pulls electricity from rice fields

MICROSAT BLITZ
RoboSimian Drives, Walks and Drills in Robotics Finals

Robot eyes will benefit from insect vision

Helping robots handle uncertainty

Using Minecraft to unboggle the robot mind

MICROSAT BLITZ
Victoria open for clean energy business after wind farm changes

Keeping energy clean and the countryside quiet

NREL, Clemson University collaborate on wind energy testing facilities

South Africa advancing wind energy plans

MICROSAT BLITZ
California ruling against Uber hits at business model

India's booming taxi-app firms endure bumpy ride

China tech giant Baidu to develop driverless car: media

Tesla boss downplays government subsidy as 'pittance'

MICROSAT BLITZ
Argonne advances engine simulation for greater efficiency

NIST's 'nano-raspberries' could bear fruit in fuel cells

Improving energy storage with a cue from nature

Saft expands its Li-ion solar energy storage portfolio

MICROSAT BLITZ
Vietnam to evacuate 1,288 households for construction of nuke power plants

Kiev Claims Nuclear Facilities in Crimea Belong to Ukraine

Japan Prepares to Restart Sendai NPP

S. Korea to close its oldest reactor

MICROSAT BLITZ
Engineers develop plan to convert US to 100 percent renewable energy

Finland to start selling electricity to Russia

Ethiopia to cut carbon emissions by two-thirds by 2030

UNIDO: China needs greener agenda

MICROSAT BLITZ
Changing climate prompts boreal forest shift

Predicting tree mortality

When trees aren't 'green'

Japanese tree plantations causing nitrogen pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.