Solar Energy News  
FROTH AND BUBBLE
NASA Study Untangles Smoke, Pollution Effects on Clouds
by Carol Rasmussen for NASA Science News
Pasadena CA (JPL) Sep 25, 2018

Heavy human-caused pollution can suppress the growth of rain-producing clouds.

A new NASA-led study helps answer decades-old questions about the role of smoke and human-caused air pollution on clouds and rainfall. Looking specifically at deep convective clouds - tall clouds like thunderclouds, formed by warm air rising - the study shows that smoky air makes it harder for these clouds to grow. Pollution, on the other hand, energizes their growth, but only if the pollution isn't heavy. Extreme pollution is likely to shut down cloud growth.

Researchers led by scientist Jonathan Jiang of NASA's Jet Propulsion Laboratory in Pasadena, California, used observational data from two NASA satellites to investigate the effects of smoke and human-made air pollutants at different concentrations on deep convective clouds.

The two satellites - the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat - orbited on the same track only a few seconds apart from 2006 until this year. CloudSat uses a radar to measure cloud locations and heights worldwide, and CALIPSO uses an instrument called a lidar to measure smoke, dust, pollution and other microscopic particles in the air, which are collectively referred to as aerosols, at the same locations at almost the same time. The combined data sets allow scientists to study how aerosol particles affect clouds.

CALIPSO is able to classify aerosols into several types, a capability which was improved two years ago when the CALIPSO mission team developed improved data-processing techniques. At about the same time, the CloudSat team also improved its classification of the cloud types. Jiang's team knew that these improvements had the potential to clarify how different aerosols affect the ability of clouds to grow. It took him and his colleagues about two years to go through both data sets, choose the best five-year period and Earth regions to study, and do the analysis.

Clouds typically cannot form without some aerosols, because water vapor in the air does not easily condense into liquid water or ice unless it comes in contact with an aerosol particle. But there are many types of aerosols - not only the ones studied here but volcanic ash, sea salt and pollen, for example - with a wide range of sizes, colors, locations and other characteristics. All of these characteristics affect the way aerosols interact with clouds. Even the same type of aerosol may have different effects at different altitudes in the atmosphere or at different concentrations of particles.

Smoke particles absorb heat radiation emitted by the ground. This increases the temperature of the smoke particles, which can then warm the air. At the same time they block incoming sunlight, which keeps the ground cooler. That reduces the temperature difference between the ground and the air. For clouds to form, the ground needs to be warmer and the air cooler so that moisture on the ground can evaporate, rise and condense higher in the atmosphere. By narrowing the temperature gap between the ground and the air, smoke suppresses cloud formation and growth.

Human-pollutant aerosols like sulfates and nitrates, on the other hand, do not absorb much heat radiation. In moderate concentrations, they add more particles to the atmosphere for water to condense onto, enabling clouds to grow taller. If pollution is very heavy, however, the sheer number of particles in the sky blocks incoming sunlight - an effect often visible in the world's most polluted cities. That cools the ground just as smoke aerosols do, inhibiting the formation of clouds.

The scientists also studied dust aerosols and found that their characteristics varied so much from place to place that they could either suppress or energize cloud formation. "It's about the complexity in dust color and size," Jiang said. "Sahara dust may be lighter, while dust from an Asian desert might likely be darker." A blanket of lighter-colored or smaller dust scatters incoming sunlight while not warming the air. Larger or darker dust particles absorb sunlight and warm the air.

The paper in Nature Communications is titled "Contrasting Effects on Deep Convective Clouds by Different Types of Aerosols." Coauthors are from UCLA; Caltech in Pasadena, California; the University of Colorado, Boulder; NASA's Langley Research Center in Hampton, Virginia; and the University of Wyoming, Laramie.


Related Links
CALIPSO at NASA
Our Polluted World and Cleaning It Up


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FROTH AND BUBBLE
Coca-Cola, Walmart to cut plastic pollution in oceans
Montreal (AFP) Sept 20, 2018
Coca-Cola, Walmart and other big multinationals pledged on Thursday to help reduce plastic pollution in the world's oceans in support of a campaign by five of the G7 industrialized nations. Britain, Canada, France, Germany and Italy, along with the European Union, signed the Ocean Plastics Charter at a leaders' summit in Canada's Charlevoix region in June. The United States and Japan abstained but non-G7 nations Norway and Jamaica are also backing the plan to ensure 100 percent of plastics are ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FROTH AND BUBBLE
After 150 years, a breakthrough in understanding the conversion of CO2 to electrofuels

New method more than doubles sugar production from plants

WELTEC BIOPOWER at the EnergyDecentral

A protective shield for sensitive enzymes in biofuel cells

FROTH AND BUBBLE
Russian scientists send FEDOR robot to Roscosmos for launch

'Robotic skins' turn everyday objects into robots

Spray coated tactile sensor on a 3D surface for robotic skin

Google Mini captures top spot in connected speaker market: survey

FROTH AND BUBBLE
Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

FROTH AND BUBBLE
Drivers for Uber, Lyft see incomes fall as participation jumps

Renault-Nissan alliance takes Google Android for a drive

Ford executive says may boost production in China to avoid tariffs

Late to the party, German carmakers join race against Tesla

FROTH AND BUBBLE
Laser ignites hot plasma

New battery gobbles up carbon dioxide

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

Yotta Solar solves panel level energy storage

FROTH AND BUBBLE
Framatome and Entergy sign contract for accident tolerant fuel coated cladding delivery to ANO

US Nuclear Lab Building Micro-Reactor That Can Power an Army Brigade

Nuclear energy may see role wane, UN agency says

MIT Energy Initiative study reports on the future of nuclear energy

FROTH AND BUBBLE
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

FROTH AND BUBBLE
Coastal wetlands will survive rising seas, but only if we let them

Coal plant offsets with carbon capture means covering 89 percent of the US in forests

Indigenous peoples, key to saving forests, catch a break

Natural mechanism could lower emissions from tropical peatlands









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.