Solar Energy News  
IRON AND ICE
NASA selects site for asteroid sample collection on Bennu
by Staff Writers
Washington DC (SPX) Dec 13, 2019

This image shows sample site Nightingale, OSIRIS-REx's primary sample collection site on asteroid Bennu. The image is overlaid with a graphic of the OSIRIS-REx spacecraft to illustrate the scale of the site.

After a year scoping out asteroid Bennu's boulder-scattered surface, the team leading NASA's first asteroid sample return mission has officially selected a sample collection site.

The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-Rex) mission team concluded a site designated "Nightingale" - located in a crater high in Bennu's northern hemisphere - is the best spot for the OSIRIS-REx spacecraft to snag its sample.

The OSIRIS-REx team spent the past several months evaluating close-range data from four candidate sites in order to identify the best option for the sample collection. The candidate sites - dubbed Sandpiper, Osprey, Kingfisher, and Nightingale - were chosen for investigation because, of all the potential sampling regions on Bennu, these areas pose the fewest hazards to the spacecraft's safety while still providing the opportunity for great samples to be gathered.

"After thoroughly evaluating all four candidate sites, we made our final decision based on which site has the greatest amount of fine-grained material and how easily the spacecraft can access that material while keeping the spacecraft safe," said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona in Tucson.

"Of the four candidates, site Nightingale best meets these criteria and, ultimately, best ensures mission success."

Site Nightingale is located in a northern crater 230 feet (70 meters) wide. Nightingale's regolith - or rocky surface material - is dark, and images show that the crater is relatively smooth.

Because it is located so far north, temperatures in the region are lower than elsewhere on the asteroid and the surface material is well-preserved. The crater also is thought to be relatively young, and the regolith is freshly exposed. This means the site would likely allow for a pristine sample of the asteroid, giving the team insight into Bennu's history.

Although Nightingale ranks the highest of any location on Bennu, the site still poses challenges for sample collection. The original mission plan envisioned a sample site with a diameter of 164 feet (50 meters). While the crater that hosts Nightingale is larger than that, the area safe enough for the spacecraft to touch is much smaller - approximately 52 feet (16 meters) in diameter, resulting in a site that is only about one-tenth the size of what was originally envisioned.

This means the spacecraft has to very accurately target Bennu's surface. Nightingale also has a building-size boulder situated on the crater's eastern rim, which could pose a hazard to the spacecraft while backing away after contacting the site.

The mission also selected site Osprey as a backup sample collection site. The spacecraft has the capability to perform multiple sampling attempts, but any significant disturbance to Nightingale's surface would make it difficult to collect a sample from that area on a later attempt, making a backup site necessary.

The spacecraft is designed to autonomously "wave-off" from the site if its predicted position is too close to a hazardous area. During this maneuver, the exhaust plumes from the spacecraft's thrusters could potentially disturb the surface of the site, due to the asteroid's microgravity environment. In any situation where a follow-on attempt at Nightingale is not possible, the team will try to collect a sample from site Osprey instead.

"Bennu has challenged OSIRIS-REx with extraordinarily rugged terrain," said Rich Burns, OSIRIS-REx project manager at NASA's Goddard Space Flight Center.

"The team has adapted by employing a more accurate, though more complex, optical navigation technique to be able to get into these small areas. We'll also arm OSIRIS-REx with the capability to recognize if it is on course to touch a hazard within or adjacent to the site and wave-off before that happens."

With the selection of final primary and backup sites, the mission team will undertake further reconnaissance flights over Nightingale and Osprey, beginning in January and continuing through the spring.

Once these flyovers are complete, the spacecraft will begin rehearsals for its first "touch-and-go" sample collection attempt, which is scheduled for August. The spacecraft will depart Bennu in 2021 and is scheduled to return to Earth in September 2023.


Related Links
OSIRIS-REx
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
OSIRIS-REx mission explains Bennu's mysterious particle events
Greenbelt MD (SPX) Dec 06, 2019
Shortly after NASA's OSIRIS-REx spacecraft arrived at asteroid Bennu, an unexpected discovery by the mission's science team revealed that the asteroid could be active, or consistently discharging particles into space. The ongoing examination of Bennu - and its sample that will eventually be returned to Earth - could potentially shed light on why this intriguing phenomenon is occurring. The OSIRIS-REx team first observed a particle ejection event in images captured by the spacecraft's navigation ca ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Put a brake on bioenergy by 2050 to avoid negative climate impacts

Pathways toward post-petrochemistry

Scientists devise catalyst that uses light to turn carbon dioxide to fuel

Co-combustion of wood and oil-shale reduces carbon emissions

IRON AND ICE
Self-driving microrobots

CIMON-2 is on its way to the ISS

Insects' drag-based flight mechanism could improve tiny flying robots

Helping machines perceive some laws of physics

IRON AND ICE
Saving bats from wind turbine death

DTEK reaches 1 GW of renewable energy generation capacity in Ukraine

Global winds reverse decades of slowing and pick up speed

Superconducting wind turbine chalks up first test success

IRON AND ICE
Activists sabotage 'ecologically catastrophic' e-scooters in France

Volkswagen strikes settlement with Canada over 'dieselgate'

Mass English lawsuit over VW 'dieselgate' reaches court

China to target quarter of vehicle sales to be electric by 2025

IRON AND ICE
Proton-hydrogen collision model could impact fusion research

Fusion by strong lasers

Detours may make batteries better

Electronic map reveals 'rules of the road' in superconductor

IRON AND ICE
Framatome signs a cooperation agreement with Japan on the development of fast neutron reactors

At 50, Europe's oldest nuclear plant not ready to retire

GE Hitachi Nuclear Energy awarded contract to support decommissioning of Pilgrim Nuclear Power Station

New broom at UN nuclear watchdog as Iran tensions rise

IRON AND ICE
Bayer targets climate-neutral business by 2030

EU leader urges MEPs to back green growth plan

US accused of seeking climate funding waiver at UN talks

Africa caught between climate and growth: top diplomat

IRON AND ICE
Siberian researchers contribute to global monitoring of the Earth's Green Lungs

Megadroughts fueled Peruvian cloud forest activity

Healthy mangroves can protect against climate change

Zambian president allegedly involved in illegal timber trade: report









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.