Solar Energy News  
SPACEMART
NASA small satellites will take a fresh look at Earth
by Staff Writers
Washington DC (SPX) Nov 09, 2016


Artist's concept of the TROPICS mission, which will study hurricanes with a constellation of 12 CubeSats flying in formation. Image courtesy MIT Lincoln Laboratory. For a larger version of this image please go here.

Beginning this month, NASA is launching a suite of six next-generation, Earth-observing small satellite missions to demonstrate innovative new approaches for studying our changing planet. These small satellites range in size from a loaf of bread to a small washing machine and weigh from a few to 400 pounds (180 kilograms).

Their small size keeps development and launch costs down as they often hitch a ride to space as a "secondary payload" on another mission's rocket - providing an economical avenue for testing new technologies and conducting science.

"NASA is increasingly using small satellites to tackle important science problems across our mission portfolio," said Thomas Zurbuchen, associate administrator of NASA's Science Mission Directorate in Washington. "They also give us the opportunity to test new technological innovations in space and broaden the involvement of students and researchers to get hands-on experience with space systems."

Small-satellite technology has led to innovations in how scientists approach Earth observations from space. These new missions, five of which are scheduled to launch during the next several months, will debut new methods to measure hurricanes, Earth's energy budget, aerosols and weather.

"NASA is expanding small satellite technologies and using low-cost, small satellites, miniaturized instruments, and robust constellations to advance Earth science and provide societal benefit through applications," said Michael Freilich, director of NASA's Earth Science Division in Washington.

Four CubeSats in Three Launches
Scheduled to launch this month, RAVAN, the Radiometer Assessment using Vertically Aligned Nanotubes, is a CubeSat that will demonstrate new technology for detecting slight changes in Earth's energy budget at the top of the atmosphere - essential measurements for understanding greenhouse gas effects on climate. RAVAN is led by Bill Swartz at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

In spring 2017, two CubeSats are scheduled to launch to the International Space Station for a detailed look at clouds. Data from the satellites will help improve scientists' ability to study and understand clouds and their role in climate and weather.

IceCube, developed by Dong Wu at NASA's Goddard Space Flight Center in Greenbelt, Maryland, will use a new, miniature, high-frequency microwave radiometer to measure cloud ice. HARP, the Hyper-Angular Rainbow Polarimeter, developed by Vanderlei Martins at the University of Maryland Baltimore County in Baltimore, will measure airborne particles and the distribution of cloud droplet sizes with a new method that looks at a target from multiple perspectives.

In early 2017, MiRaTA - the Microwave Radiometer Technology Acceleration mission - is scheduled to launch into space with the National Oceanic and Atmospheric Administration's Joint Polar Satellite System-1. MiRaTA packs many of the capabilities of a large weather satellite into a spacecraft the size of a shoebox, according to Principal Investigator Kerri Cahoy from the Massachusetts Institute of Technology in Cambridge. MiRaTA's miniature sensors will collect data on temperature, water vapor and cloud ice that can be used in weather forecasting and storm tracking.

The RAVAN, HARP, IceCube and MiRaTA CubeSat missions are funded and managed by NASA's Earth Science Technology Office (ESTO) in the Earth Science Division. ESTO supports technologists at NASA centers, industry and academia to develop and refine new methods for observing Earth from space, from information systems to new components and instruments.

"The affordability and rapid build times of these CubeSat projects allow for more risk to be taken, and the more risk we take now the more capable and reliable the instruments will be in the future," said Pamela Millar, ESTO flight validation lead. "These small satellites are changing the way we think about making instruments and measurements. The cube has inspired us to think more outside the box."

Two Small-Satelite Constellations
NASA's early investment in these new Earth-observing technologies has matured to produce two robust science missions, the first of which is set to launch in December.

CYGNSS - the Cyclone, Global Navigation Satellite System - will be NASA's first Earth science small satellite constellation. Eight identical satellites will fly in formation to measure wind intensity over the ocean, providing new insights into tropical cyclones. Its novel approach uses reflections from GPS signals off the ocean surface to monitor surface winds and air-sea interactions in rapidly evolving cyclones, hurricanes and typhoons throughout the tropics.

CYGNSS, led by Chris Ruf at the University of Michigan, Ann Arbor, is targeted to launch on Dec. 12 from Cape Canaveral Air Force Station in Florida. Derek Posselt of NASA's Jet Propulsion Laboratory, Pasadena, California, is the deputy principal investigator.

Earlier this year NASA announced the start of a new mission to study the insides of hurricanes with a constellation of 12 CubeSats. TROPICS - the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats - will use radiometer instruments based on the MiRaTA CubeSat that will make frequent measurements of temperature and water vapor profiles throughout the life cycle of individual storms. William Blackwell at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington leads the mission.

CYGNSS and TROPICS both benefited from early ESTO technology investments. These Earth Venture missions are small, targeted science investigations that complement NASA's larger Earth research missions. The rapidly developed, cost-constrained Earth Venture projects are competitively selected and funded by NASA's Earth System Science Pathfinder program within the Earth Science Division.

Small spacecraft and satellites are helping NASA advance scientific and human exploration, reduce the cost of new space missions, and expand access to space. Through technological innovation, small satellites enable entirely new architectures for a wide range of activities in space with the potential for exponential jumps in transformative science.

For video and animations of NASA small satellite projects, visit here


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
CubeSat at NASA
The latest information about the Commercial Satellite Industry






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACEMART
Sun-observing MinXSS CubeSat to yield insights into solar flare energetics
Los Angeles CA (SPX) Nov 08, 2016
A small shoebox-sized satellite has recently proved that studying solar phenomena is not reserved only to large space observatories. The NASA-funded, Miniature X-Ray Solar Spectrometer (MinXSS) is providing invaluable information about solar flares coming from the Sun, what could shed new light on these violent and energetic events. "The new solar soft X-ray spectral irradiance measurement ... read more


SPACEMART
Bioelectronics at the speed of life

NREL finds bacterium that uses both CO2 and cellulose to make biofuels

State partnerships can promote increased bio-energy production, reduce emissions

Turning biofuel waste into wealth in a single step

SPACEMART
Chemists develop world's first light-seeking synthetic Nanorobot

'Bots' step up for 2016 election news coverage

Bio-inspired lower-limb 'wearing robotic exoskeleton' for human gait rehab

US warned against Chinese takeover of German firm: report

SPACEMART
Alberta pushing hard on renewable energy pedal

Cuomo announces major progress in offshore wind development

New York set for offshore wind after environmental review

OX2 signs 148 MW wind power deal with Aquila Capital and Google

SPACEMART
China auto sales growth falls back in October: group

VW's Audi hit with fresh emissions cheating lawsuit

Nissan aims for China launch of cheap electric car in 2 years

VW makes progress towards 3.0 l diesel settlement: judge

SPACEMART
PPPL physicists build diagnostic that measures plasma velocity in real time

Salty batteries

Lithium ion extraction

Shoring up the power grid - with DIY scrap-metal batteries

SPACEMART
Japan, India sign controversial civil nuclear deal

Vietnam to scrap planned nuclear plants: state media

French, Finns divided over nuclear dispute ruling

Russia, China Plan Documents to Build 2 New Tianwan Nuclear Power Plant Reactors

SPACEMART
Deeper carbon cuts needed to avoid climate tragedy: UN

New program makes energy-harvesting computers more reliable

Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

SPACEMART
Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

New warning over spread of ash dieback









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.